
 

NASA/TP-1998-206543

 

Robust Flutter Margin Analysis That 
Incorporates Flight Data

 

Rick Lind 
National Research Council
NASA Dryden Research Associate
Dryden Flight Research Center
Edwards, California

Martin J. Brenner
Dryden Flight Research Center
Edwards, California

 

March 1998

∆in

∆A

F/A-18

Noise Win

y u

970999

qδ–



 

Since its founding, NASA has been dedicated to 
the advancement of aeronautics and space  
science. The NASA Scientific and Technical 
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by 
Langley Research Center, the lead center for 
NASA’s scientific and technical information.
The NASA STI Program Office provides access 
to the NASA STI Database, the largest collection 
of aeronautical and space science STI in the
world. The Program Office is also NASA’s 
institutional mechanism for disseminating the 
results of its research and development activities. 
These results are published by NASA in the
NASA STI Report Series, which includes the 
following report types:

• TECHNICAL PUBLICATION. Reports of 
completed research or a major significant    
phase of research that present the results of 
NASA programs and include extensive data
or theoretical analysis. Includes compilations 
of significant scientific and technical data 
and information deemed to be of continuing 
reference value. NASA’s counterpart of 
peer-reviewed formal professional papers but 
has less stringent limitations on manuscript 
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific 
and technical findings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies 
that contain minimal annotation. Does not 
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and 
technical findings by NASA-sponsored 
contractors and grantees.

 

• CONFERENCE PUBLICATION. Collected 
papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific, 
technical, or historical information from 
NASA programs, projects, and mission,
often concerned with subjects having 
substantial public interest.

• TECHNICAL TRANSLATION. English- 
language translations of foreign scientific 
and technical material pertinent to NASA’s 
mission.

Specialized services that complement the STI 
Program Office’s diverse offerings include 
creating custom thesauri, building customized 
databases, organizing and publishing research 
results . . . even providing videos.

For more information about the NASA STI 
Program Office, see the following:

• Access the NASA STI Program Home Page
at 

 

http://www.sti.nasa.gov

 

• E-mail your question via the Internet to 
help@sti.nasa.gov

• Fax your question to the NASA Access Help 
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at 
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information 
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

 

The NASA STI Program Office . . . in Profile



 

NASA/TP-1998-206543

 

Robust Flutter Margin Analysis That 
Incorporates Flight Data

 

Rick Lind 
National Research Council
NASA Dryden Research Associate
Dryden Flight Research Center
Edwards, California

Martin J. Brenner
Dryden Flight Research Center
Edwards, California

 

March 1998

 

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, California 93523-0273



 

NOTICE

 

Use of trade names or names of manufacturers in this document does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the National
Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161
Price Code: A16 Price Code: A16

 

ACKNOWLEDGMENTS

 

This work was performed while Rick Lind held a National Research Council–NASA Dryden
Flight Research Center Postdoctoral Research Associateship.

The authors would like to thank the NASA Dryden employees and associates who voluntarily
served on a technical review committee to evaluate and improve this paper. This committee
was  chaired by Larry Freudinger and staffed by Mark Stephenson and John Carter of the NASA
Dryden Controls and Dynamics Branch and visiting professor Rick Howard from the U.S. Navy
Postgraduate School. This committee provided an exhaustive review and indicated several
improvements that greatly increased the value of this paper. All remaining errors and poor expla-
nations are a direct indication of the authors’ inability to sufficiently address the many comments
and suggestions.

The authors would also like to thank the NASA Dryden Structural Dynamics group. Leonard
Voelker was instrumental in developing the 

 

µ

 

 method by continuously providing comments and
suggestions relating to the physics of flutter and how to interpret 

 

µ

 

 in terms of this phenomenon.
Larry Freudinger helped develop the concepts of uncertainty in aeroelastic models and the intro-
duction of additional uncertainty from signal processing. Dave Voracek was the Chief Engineer
for the F/A-18 Systems Research Aircraft (SRA) project during the 

 

µ

 

-method development and
helped provide the large database of flight data and key information regarding the F/A-18 SRA
flight systems and characteristics. Roger Truax and Tim Doyle generated the finite-element model
of the F/A-18 SRA and computed theoretical aerodynamic-force matrices for this model. Mike
Kehoe oversaw the research program, ensured time and resources were always available, and
suggested research avenues to address practical concerns of the aeroelasticity community.



 

iii

 

CONTENTS

 

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

NOMENCLATURE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2
ROBUST STABILITY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Small Gain Theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Robust Stability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3
STRUCTURED SINGULAR VALUE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1  Linear Fractional Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2  Structured Uncertainty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3  Structured Singular Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 4
ROBUST FLUTTER MARGINS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Nominal Aeroelastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2  Nominal Aeroelastic Model in the Structured Singular Value

 

 

 

Framework  . . . . . . . . . . . . . . . 24
4.3  Robust Aeroelastic Model in the Structured Singular Value

 

 

 

Framework  . . . . . . . . . . . . . . . . 26
4.4  Computing a Flutter Margin with the Structured Singular Value . . . . . . . . . . . . . . . . . . . . . . . 27
4.5  Properties of the Structured Singular Value as a Flutter Margin  . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 5
UNCERTAINTY DESCRIPTIONS IN AEROELASTIC MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1  Parametric Uncertainty in Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2  Parametric Uncertainty in Aerodynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3  Dynamic Uncertainty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4  Uncertainty Associated with Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5  Uncertainty Associated With Flight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 6
MODEL VALIDATION OF UNCERTAINTY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1   Model Validation Using the Structured Singular Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2  Validating Norm Bounds for Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



 

iv

CHAPTER 7
PROCEDURE FOR THE 

 

µ

 

 METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1  Model Updating  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2  Approaches to Use Flight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 8
ROBUST FLUTTER MARGINS OF THE F/A-18 SYSTEMS RESEARCH AIRCRAFT . . . . . . . . . 60

8.1  Aircraft Flight Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2  Aeroelastic Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3  Analytical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.4  Uncertainty Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.5  Nominal and Robust Flutter Pressures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.6  Nominal and Robust Flutter Margins for a Flight Envelope  . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.7  Computational Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CHAPTER 9
RESEARCH EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.1  Sensitivity Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2  On-Line Stability Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3  Robust Aeroservoelastic Stability Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.4  Nonlinear Limit-Cycle Oscillation Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER 10
CONCLUSION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

APPENDIX A
UPPER BOUND FOR THE STRUCTURED SINGULAR VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDIX B
NOMINAL AEROELASTIC MODELS IN THE STRUCTURED SINGULAR VALUE
FRAMEWORK WITH KNOWN AERODYNAMIC STIFFNESS AND DAMPING  . . . . . . . . . . . . 87

REFERENCES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

 

TABLES

 

8.1 Operating and flight conditions for the F/A-18 SRA flight flutter test  . . . . . . . . . . . . . . . . . . . . . 62

8.2. Elastic natural frequencies of the structural finite-element model of the fully fueled
F/A-18 SRA with left-wing modifications and no wingtip excitation system . . . . . . . . . . . . . . . . 66

8.3 Nominal and robust flutter pressures computed with p-k and 

 

µ

 

 methods . . . . . . . . . . . . . . . . . . . 71

8.4 Frequencies of unstable modes associated with nominal and robust flutter pressures
computed with p-k and 

 

µ

 

 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.5 Subcritical nominal flutter pressures computed with p-k and 

 

µ

 

 methods  . . . . . . . . . . . . . . . . . . . 72



 

v

 

8.6 Nominal and robust flutter margins for a flight envelope expressed as allowable 
increase in dynamic pressure computed with p-k and 

 

µ

 

 methods for symmetric and
antisymmetric modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.7 Nominal and robust flutter margins for a flight envelope expressed as percent of
allowable increase in 

 

KEAS

 

 computed with p-k and 

 

µ

 

 methods for symmetric and
antisymmetric modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

 

FIGURES

 

1.1. Information flowchart for traditional and 

 

µ

 

 methods to compute flutter margins . . . . . . . . . . . . . 8

2.1. Block diagram for the small gain theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Block diagram with uncertainty for the example system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Block diagram for robust stability analysis of the example system using the small
gain theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Linear fractional transformation (P, 

 

∆

 

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Linear fractional transformation  (P, 

 

∆

 

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Family of plants 

 

P

 

 = P(I + 

 

∆

 

 W) with input multiplicative uncertainty . . . . . . . . . . . . . . . . . . . . 18

3.4. Family of Plants 

 

P 

 

= (I + 

 

∆

 

 W)P with output multiplicative uncertainty  . . . . . . . . . . . . . . . . . . 18

3.5. Family of plants 

 

P

 

 = P + 

 

∆

 

W with additive uncertainty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6. Linear fractional transformation system for robust stability analysis using 

 

µ

 

 . . . . . . . . . . . . . . . 20

4.1. Linear fractional transformation system for nominal stability analysis in the 

 

µ

 

 framework
with parameterization around perturbation in dynamic pressure  . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework
with parameterization around perturbation in dynamic pressure and structured uncertainty . . . . 27

5.1. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework
with parameterization around perturbation in dynamic pressure and uncertainty in
structural stiffness and damping matrices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework
with parameterization around perturbation in dynamic pressure and uncertainty in  and

 matrices of the state-space Q(s) model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3. Linear fractional transformation system describing Padé approximation to represent
unsteady aerodynamic force matrix in the 

 

µ

 

 framework with uncertainty in lag terms  . . . . . . . 41

5.4. Family of plants 

 

P

 

 = (I + 

 

∆

 

W) with input multiplicative uncertainty . . . . . . . . . . . . . . . . . . . 42

5.5. Transfer functions for example system with multiplicative uncertainty  . . . . . . . . . . . . . . . . . . . 43

5.6. Family of plants 

 

P

 

 =  + W 

 

∆

 

 with additive uncertainty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7. Transfer functions for example system with additive uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8. Linear fractional transformation system with nominal models and associated uncertainty
operators   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Fu

Fl

AQ
BQ

Po

Po



 

vi

 

5.9. System responses for hardening spring example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.10. System responses for softening spring example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11. System responses for hysteresis example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1. Linear fractional transformation system for robust stability analysis and model
validation with forcing and measurement signals   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1. Information flowchart to generate plant and uncertainty operators from a system
model and flight data with the 

 

µ 

 

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.1 F/A-18 systems research aircraft  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..60

8.2 Left wing of the F/A-18 systems research aircraft with wingtip excitation system . . . . . . . . . . . 61

8.3. Flight data transfer functions from symmetric excitation to left wing forward accelerometer
for Mach = 0.8 and 30,000 ft demonstrating variation in modal frequency and damping . . . . . . 62

8.4. Phase difference in degrees between left and right exciters for sweep range 3–30 Hz at
Mach = 0.90 and 30,000 ft at  = 356 lb/ft

 

2

 

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.5. Phase difference in degrees between left and right exciters for sweep range 3–30 Hz at
Mach = 0.90 and 10,000 ft at  = 825 lb/ft

 

2

 

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.6. Flight data transfer function from symmetric excitation to left wing forward accelerometer
for Mach = 0.8 and 30,000 ft with frequency increasing sweep from 3–35 Hz . . . . . . . . . . . . . . 65

8.7. Flight data transfer function from symmetric excitation to left wing forward accelerometer
for Mach = 0.8 and 30,000 ft with frequency decreasing sweep from 35–3 Hz  . . . . . . . . . . . . . 65

8.8. Magnitude and phase of the frequency-varying unsteady aerodynamic forces . . . . . . . . . . . . . . 67

8.9. F/A-18 robust stability block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.10. Nominal and robust flutter points for symmetric modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.11. Nominal and robust flutter points for antisymmetric modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.12. Antisymmetric p-k flutter solutions for Mach 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1. Block diagram with LTI and LTV uncertainty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

q

q



 

ABSTRACT

 

An approach for computing worst-case flutter margins has been formulated in a robust stability
framework. Uncertainty operators are included with a linear model to describe modeling errors and flight
variations. The structured singular value, 

 

µ

 

, computes a stability margin that directly accounts for these
uncertainties. This approach introduces a new method of computing flutter margins and an associated
new parameter for describing these margins. The 

 

µ

 

 margins are robust margins that indicate worst-case
stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for
the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust
margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously
estimated by p-k analysis.
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flutter pressure expressing dynamic pressure at which flutter occurs, lbf

nominal flutter pressure computed with µ method, lbf

nominal value of dynamic pressure, lbf

nominal flutter pressure computed with p-k method, lbf

robust flutter pressure computed with µ method, lbf

Q unsteady aerodynamic force matrix

high-order components of unsteady aerodynamic force matrix

space of real scalars

Re real part

dimension of  scalar block of real uncertainty

space of real vectors of dimension n

space of real-valued matrices of dimension n by m

nf

ni

no

nQ

ns

nw

nz

P

Pij j
th

i
th

q

q flutter

qnom

qo

qp-k

qrob

Qss

R

Ri i
th

Rn

R
n m×
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rob robust

stable, rational transfer functions in definition 2.2.4

s Laplace transform variable

S state-space system operator

SRA Systems Research Aircraft

S space of signals in definition 2.1.1

space of input signals

set of frequency-domain signals in definition 2.1.5

space of output signals

t time

TI time-invariant

TV time-varying

u input signal 

V velocity

w feedback signal from uncertainty to plant 

weighting on imaginary part of eigenvalue

weighting on a lag

weighting on real part of eigenvalue

W matrix scaling uncertainty operators

matrix scaling feedback perturbation to dynamic pressure

x state vector

derivative of x with respect to time

y output signal 

z feedback signal from plant to uncertainty 

α real scalar

β pole in Padé approximation to a lag

Γ flutter margin expressed as a difference in dynamic pressure, lbf

nominal flutter margin computed with µ method

nominal flutter margin computed with p-k method

robust flutter margin computed with µ method

δ uncertainty scalar 

RH∞

Sin

S j   ω

Sout

wi

wlag

wr

Wq

ẋ

Γnom

Γp-k

Γrob
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flutter margin expressed as a difference in dynamic pressure

lower bound for real perturbation

uncertainty perturbation on dynamic pressure

upper bound for real perturbation

 

∆

 

uncertainty matrix 

structured operator containing uncertainty and perturbation to flight condition

a set of uncertainty matrix operators 

set of  

ε

 

real scalar

damping

state vector

derivative of  with respect to time

derivative of  with respect to time

maximum eigenvalue

 

µ

 

structured singular value

 

Π

 

flutter margin expressed as percentage of knots of equivalent airspeed

nominal flutter margin computed with 

 

µ

 

 method

nominal flutter margin computed with p-k method

robust flutter margin computed with 

 

µ

 

 method

 

ρ

 

spectral radius

 

σ

 

singular value

maximum singular value

 

ω

 

frequency, rad/sec

frequency of unstable mode associated with 

frequency of unstable mode associated with 

frequency of unstable mode associated with 

 

Ω

 

set of frequency points

2-norm of frequency-domain signal in definition 2.1.6

–norm induced by  signals in definition 2.2.1

2-norm of time-domain signal in definition 2.1.2

δ flutter

δlower

δq

δupper

∆

ÆÆÆÆ

ÆÆÆÆ ∆

ζ

η

η̇ η

η̇̇ η̇

λ

Πnom

Πp-k

Πrob

σ

ωnom qnom

ωp-k qp-k

ωrob qrob

f j   ω( ) 2

P ∞ H∞ L2

x t( ) 2
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CHAPTER 1
INTRODUCTION

 

Aeroelastic flutter is a potentially destructive instability resulting from an interaction between aero-
dynamic, inertial, and structural forces.

 

1

 

 The stability properties of the aeroelastic dynamics must be
investigated to determine a flight envelope that is clear of flutter instabilities for new aircraft designs or
new configurations of current aircraft. Analytical predictions of the onset of flutter must be accurate to
reduce dangers and costs associated with experimental estimation.

 

2

 

Critical flutter conditions are the points closest to the flight envelope at which flutter instabilities
occur. This concept of closeness is formally defined here as a flutter pressure that considers the critical
dynamic pressure for a constant Mach value. Obviously, different flutter measures such as a flutter speed
can be defined because a unique equivalent airspeed is associated with each dynamic pressure for a given
Mach number; however, this paper uses definition 1.0.1 for a flutter pressure to describe the critical
flutter flight conditions.

 

Definition 1.0.1:

 

  

 

A flutter pressure is the smallest value of dynamic pressure for which an aircraft at
a particular Mach number experiences a flutter instability

 

.

The flutter pressure is used to compute a stability margin, or flutter margin, that indicates the distance
between the flutter pressure and a reference point. A common flutter margin, 

 

Γ

 

, considers the difference
in dynamic pressure between the flutter pressure and a point on the edge of the flight envelope. Another
common flutter margin, 

 

Π

 

, considers the percentage difference between equivalent airspeeds at the flutter
condition and a point within the flight envelope.

 

Definition 1.0.2:  

 

A flutter margin relates a measure of distance between the flight condition associ-
ated with the flutter pressure and a reference point

 

.

The traditional p-k method has been extensively used to compute flutter margins for a variety of
military and commercial aircraft.

 

3

 

 This iterative method uses an analytical dynamic model coupled with
harmonic motion solutions for the unsteady aerodynamic forces. The p-k method predicts flutter margins
entirely from a theoretical model that may not accurately describe the true dynamics of the airplane. The
resulting flutter margins do not account for possible variations between the model and the aircraft.

The community studying aeroelasticity has identified the development of improved methods for
characterizing flutter margins as a vital research area.

 

4

 

 Flight testing for envelope expansion incurs
dramatic time and cost because stability margins are not computed with a high level of confidence using
traditional methods.

 

2

 

 The flutter dynamics often exhibit an explosive behavior that results in a sudden
change in stability for a small change in flight conditions. Thus, small errors in predicted margins could
have grave consequences for aircraft and crews operating near the flutter conditions.

Several approaches exist for characterizing accurate flutter margins using flight data generated by the
aircraft. These data describe the true dynamics and can be used to generate realistic models and compute
confident flutter margins. Parameter estimation algorithms have been developed to directly identify an
aeroelastic model from the flight data.

 5, 6 
 The accuracy of the resulting model can deteriorate as the com-

plexity and number of degrees of freedom of the system increase and signal-to-noise ratios decrease from
optimal wind-tunnel conditions to realistic flight levels. Modal filtering has been introduced in associa-
tion with parameter estimation algorithms to simplify analysis by decoupling the system into a set of



 

7

first-order responses.

 

7, 8

 

 This type of filtering does not guarantee robustness and may not perform well
for systems with many closely-spaced modal natural frequencies that cross and shift as flight
conditions change.

Other approaches toward computing confident flutter margins evaluate the robustness of a stability
margin with respect to changes in the model as an indication of the confidence in that margin. A flutter
margin robust to perturbations to the model is a confident margin because model inaccuracies do not
affect that margin. An algorithm has been developed to compute the most critical flutter margin with
respect to first-order perturbations in a model.

 

9

 

 This method considers only parametric perturbations and
can be computationally expensive. A robust control framework has been adopted using a feedback struc-
ture to relate the structural model and the aerodynamic model.

 

10

 

 This approach uses highly conservative
robustness conditions with respect to an uncertainty structure that may not be physically meaningful. A
similar approach is adopted allowing unmodeled dynamics and high-order parametric perturbations
based on series expansion.

 

11 

 

Statistical approaches are also considered to formulate a flutter probability
measure.

 

12, 13

 

 These approaches will converge to a robustness indicator using Monte Carlo simulations,
but the computation time can be prohibitive for complex systems. The robustness measures for these
perturbation and statistical approaches are suspect because no global guarantees can be made as to pertur-
bations not explicitly considered by the minimization algorithms or the Monte Carlo simulations. 

An approach to computing flutter margins that guarantees a level of robustness and directly accounts
for flight data is presented herein.

 

14

 

 An aeroelastic model is formulated in a formal robust stability frame-
work that uses a set of norm-bounded operators, 

    

ÆÆÆÆ

 

, to describe modeling errors and uncertainty. A multi-
variable robust stability measure known as the structured singular value, 

 

µ

 

, computes flutter pressures
that are robust to the amount of modeling errors as determined by 

    

ÆÆÆÆ

 

.

 

15

 

 A robust flutter margin problem is
posed by questioning what is the largest increase in dynamic pressure for which the plant is stable despite
possible modeling errors described by 

    

ÆÆÆÆ

 

.

Flight data are easily incorporated into the 

 

µ

 

 analysis procedure. The modeling errors are determined
by comparing transfer functions obtained by flight data with transfer functions predicted by the analytical
model. The norm bound on 

    

ÆÆÆÆ

 

 is chosen based on these observed errors. A model validation condition is
used to ensure the 

    

ÆÆÆÆ

 

 is sufficient to account for multiple data sets without being excessively conservative.
With respect to 

    

ÆÆÆÆ

 

, a worst-case flutter boundary is computed that directly accounts for flight data.

This method is inherently different from traditional algorithms based on p-k methods or parameter
identification and robustness approaches. The 

 

µ

 

 method uses information from both an analytical model
and flight data; traditional approaches use only one of these sources (fig. 1.1). Methods that use only an
analytical model can be inaccurate, and methods that use only the flight data can fail if the data are of
poor quality. The 

 

µ

 

 method uses the flight data to improve the analytical model by adding uncertainty
operators. Poor quality flight data will merely increase the difficulty of obtaining a reasonable uncertainty
description resulting in a small 

    

ÆÆÆÆ

 

. The robust margins will be similar to the nominal margins in this case,
which makes intuitive sense because any information obtained from the data should only enhance the
plant model and improve the accuracy of the flutter margin.

The concept of computing robustness in flutter margins has been recognized for its importance and
has recently been termed a state-of-the art research area in aeroelasticity.

 16 
 Informal measures of robust-

ness are not necessarily useful because the informal measures provide no guarantee for the system stabil-
ity. The 

 

µ

 

 method is based on operator theory and provides a well-defined concept of robustness that has
a clear set of guarantees as to the stability properties of the system. 



 

8

 

Figure 1.1. Information flowchart for traditional and 

 

µ

 

 methods to compute flutter margins.

The 

 

µ

 

 method also allows consideration of a rich set of modeling errors with direct physical interpre-
tations. Traditional techniques compute robustness with respect to a theoretical estimate of modeling
errors that can be too conservative or overly optimistic. The 

 

µ

 

 method is able to use flight data to deter-
mine these errors by employing model validation algorithms that are developed specifically for compar-
ing data with uncertain models in the 

 

µ

 

 framework. Thus, the resulting stability margins directly account
for the flight data when determining robust flutter pressures.

Robust, or worst-case, flutter margins are computed for the F/A-18 Systems Research Aircraft (SRA)
using the 

 

µ

 

 method. The flutter results presented represent an improvement to previous flutter results for
the F/A-18 SRA computed using the traditional p-k method. Nominal flutter margins computed using the

 

µ

 

 method but ignoring all uncertainty operators are shown to closely match the p-k method flutter
margins. These results lend validity to the 

 

µ

 

 method as an accurate indicator of flutter instability. Robust
flutter margins are computed with the 

 

µ

 

 method by directly accounting for modeling uncertainty to repre-
sent conservative worst-case stability margins. The computation of the 

 

µ

 

 method takes only a few min-
utes on a standard workstation.

System
identification

p-k µ

970968

Robust
margin

Nominal
estimate

Nominal
margin

System model Flight data
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CHAPTER 2
ROBUST STABILITY

2.1 Signals

 

A common definition of a signal is a Lebesgue measurable function that maps the space of real
numbers 

 

R

 

 into . A space of such signals is denoted 

 

S

 

.

 

Definition 2.1.1:

 

  

 

The space of signals that are Lebesgue measurable functions is

 

 

 

S

 

.

(1)

Analog measurements x(t) of physical systems are real vector functions of the real parameter
t describing time and thus are valid members of the space of signals, x(t) 

 

∈

 

 

 

S

 

. Values of the time param-
eter, which are often arbitrarily numbered as a distance from some reference point, actually extend to
positive and negative infinity. Stability for physical systems must ensure stability for all values of time. A
time-domain 2-norm is defined as a measure of size (or energy) for time-domain signals that considers
all time.

 

Definition 2.1.2:

 

  

 

The 2-norm measures the energy of a signal 

 

x(t) 

 

∈ 

 

S

 

.

(2)

One characteristic of a stable system is only finite-energy output signals are generated in response to
finite-energy input signals. Signals with finite energy are known as “square integrable” because the inte-
gral of the square of the signal is finite. The Lebesgue space of square integrable signals is defined as

. This space is also referred to as the infinite-horizon Lebesgue 2-space to denote that the norm
uses an integral over infinite time. 

 

Definition 2.1.3:

 

  

 

The space  consists of square integrable time-domain signals.

 

(3)

Signals associated with physical systems are only known for values of time greater than the time at
which measurements are started. Stability analysis and norm computations using these signals cannot use
properties of the signal before the starting time because no information is known. The traditional method
of characterizing these signals is to assume the signal is identically zero for all times before the starting
time. The time value at which measurements are started can be chosen without loss of generality and is
usually chosen to be t = 0. The space  is defined as a subset of  to emphasize
such signals.

 Definition 2.1.4:     The space    ⊂    consists of square integrable time-domain
signals that are identically zero for all 

 

 

 
t < 0.

(4)

Rn

S f :R Rn→{ }=

x t( ) 2 x t( ) 2
td

∞–

∞
∫ 

 =

1
2
---

L2 ∞ ∞,–( )

L2 ∞ ∞,–( )

L2 ∞ ∞,–( ) x t( )   :  x  ∈  S   x t ( ) 2 ∞< ,  { } =

L2 0 ∞ ),[ L2 ∞ ∞,–( )

L2 0 ∞ ),[ L2 ∞ ∞,–( )

L2 0 ∞ ),[ x t( )  :  x t ( ) 2 t ∞   x t ( ),<  d  
0

 
∞  ∫  0  for  all   t 0 < =  

 
 
 

 =
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A similar space  

 

⊂

 

  is defined for signals x(t) that are assumed to begin at
 and are identically zero for all times t = 0. The integral to compute the energy for elements of

this space considers  until t > 0.

Frequency-domain signals are often considered in stability analysis but do not fall into the set of
signals, 

 

S

 

. These signals 

 

f

 

 

 

(

 

j

 

 

 

ω

 

) are complex-valued functions of the imaginary unit 

 

j 

 

= , and the real
frequency variable 

 

ω

 

 is expressed in rad/sec. The set, , is defined for frequency-domain signals.

 

Definition 2.1.5:

 

  

 

The space of frequency-domain signals is 

 

. 

(5)

A frequency-domain 2-norm is formulated to compute a measure of energy.

 

Definition 2.1.6:

 

  

 

The 2-norm measures the energy of the signal

 

  

 

∈

 

 .

(6)

A frequency-domain Lebesgue space, , is defined for finite-energy signals.

 

Definition 2.1.7:

 

  

 

The space  consists of frequency-domain signals with finite energy.

 

(7)

The spaces  and  are isomorphic Hilbert spaces under the appropriate inner products
through the Fourier transform, which means the spaces have equivalent algebraic properties. This
relationship is used to simplify notation by rarely distinguishing between time-domain and frequency-
domain signals except where the context does not make it clear. The notations for the 2-norm of time
domain and frequency domain are also not distinguished because the notations are equivalent, as demon-
strated by Parseval’s identity.

 

17

 

An important subspace of  is the Hardy space, . This space contains the complex variable func-
tions that are analytic in the open right-half of the complex plane and have finite 2-norm.

 

Definition 2.1.8:

 

  

 

The Hardy space,

 

  

 

⊂

 

 , 

 

consists of the following functions

 

.

 = {

 

f

 

 

 

(s) :  

 

f

 

 

 

(s) 

 

∈

 

  

 

and

 

 

 

f

 

 

 

(s) 

 

is analytic in Re(s) > 0} (8)

The space  is isomorphic to  through the Laplace transform. Members of this set can be
interpreted as frequency-domain representations of finite-energy time-domain signals that are assumed to
be zero at t < 0.

2.2 Systems

A system P is defined as an operator mapping the space of input signals  to the space of output
signals . This definition implies that for any w ∈  and z = Pw, then z ∈ .

L2 ∞ 0 ],–( L2 ∞ ∞,–( )
t ∞–=

t ∞–=

1–
S j  ω

S j   ω

S j   ω f j   ω( )   :  j   R C 
n

  and   f * j   ω( ) f ′ j   ω –  ( ) =  →{ } =

f j   ω( ) S j   ω

f 2
1

2π
------  f * j   ω( ) f j   ω( ) ω d 

∞
 

–
 

∞  ∫   
 

 

1
2
---

 =

L2

L2

L2 f j   ω( )  :  f S j   ω   f 2 ∞< ,  ∈{ } =

L2 ∞ ∞,–( ) L2

L2 H2

H2 L2

H2 L2

L2 0 ∞ ),[ H2

Sin
Sout Sin Sout



 

11

(9)

This paper will consider linear, time-invariant systems defined by state-space equations.

(10)

The signal x(t) 

 

∈

 

  is the state vector, u(t) 

 

∈

 

  is the input vector, and y(t) 

 

∈

 

  is the output
vector. The state update matrix is 

 

 ∈

 

 ; 

 

∈

 

  determines how the input affects the
states; 

 

∈

 

  computes the outputs as a linear combination of states; and  

 

∈

 

  is the
direct feedthrough from inputs to outputs. The operator S = { , , , } denotes the time-domain
state system.

Linear time-invariant state-space systems are commonly represented by transfer-function operators.
These functions, P(s), are complex-valued matrices of the complex Laplace transform variable, s. Such a
transfer-function matrix exists if and only if the state-space system is linear and time-invariant. 

(11)

Stability must be considered over the infinite-horizon time lengths so that the operators used map
 into . Properties of the Fourier transform relating  and  imply a state-

space system, S    : , is linear and time-invariant if and only if the associated
transfer-function matrix P is such that y = Pu 

 
∈

 
  for any u 

 
∈

 
 . This condition leads to consideration

of the gain for these signals.

(12)

This ratio of 2-norms will be finite if the system is stable. Properties of the 2-norm are used to derive
a condition on the system transfer-function operator, P. This condition is referred to as an induced norm
because it results from consideration of signal norms associated with the operator. The  induced norm
is defined as the –norm. 

 

Definition 2.2.1:

 

  

 

Define the –norm for transfer-function operators

 

.

(13)

A space of operators with finite –norm is denoted as .

 

Definition 2.2.2:

 

  

 

The space  consists of systems with finite –norm

 

.

(14)

Transfer functions of linear time-invariant systems are stable if and only if z = Pw and w 

 

∈

 

  implies
z 

 

∈

 

 . This implication results from the Laplace isomorphism between  and  space. These

P  :  S in S out →

ẋ t( )
y t( )

AP BP

CP DP

x t( )
u t( )

=

Rns Rni Rno

AP Rns ns×
BP Rns ni×

CP Rno ns×
DP Rno ni×

AP BP CP DP

P s( ) DP CP sIns
AP–( ) 1– BP+=

L2 ∞ ∞,–( ) L2 ∞ ∞,–( ) L2 ∞ ∞,–( ) L2
L2 ∞ ∞,–( ) L2 ∞ ∞,–( )→

L2 L2

y 2

u 2
----------

Pu 2

u 2
--------------=

L2
H∞

H∞

P ∞ sup  
ω

 =  σ  P j   ω( )( )

H∞ L∞

L∞ H∞

L∞ P  :  P ∞ ∞<{ } =

H2
H2 L2 0 ∞ ),[ H2
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transfer functions are shown to be analytic in the open right-half complex plane with finite –norm.
Define the space  to contain these operators.

 

Definition 2.2.3:

 

  

 

The space  consists of transfer functions of stable, linear, time-invariant
systems with finite –norm.

 

(15)

A subspace  is often defined for rational elements.

 

Definition 2.2.4:

 

  

 

The space

 

,  

 

⊂

 

 , 

 

consists of rational elements of 

 

.

 = {P : P 

 

∈

 

  

 

and 

 

P

 

 is rational

 

} (16)

Transfer-function operators of linear, time-invariant state-space systems are rational functions of the
Laplace transform variable, s. These transfer functions P 

 

∈

 

  if and only if P is stable such that no
poles lie in the closed right-half plane. The space , which may appear to be a mathematical abstrac-
tion, is thus shown to have a physical interpretation.  is merely the operator theory representation of
stable, rational, transfer functions.

 

2.3 Small Gain Theorem

 

Stability of a linear time-invariant system is determined by location of all poles in the left-half plane.
Robust stability in the  and 

 

µ

 

 frameworks is determined by considering an interconnection of stable
operators. The basis for determining stability of these interconnections of operators is the “small
gain theorem.”

The small gain theorem states that a closed-loop feedback system of stable operators is internally
stable if the loop gain of those operators is stable and bounded by unity. Several formulations of the small
gain theorem are derived for various signals and systems. Theorem 2.3.1 presents the formulation used
for this paper.

 

17

 

Theorem 2.3.1 (Small Gain Theorem): 

 

Given the feedback interconnection structure of figure 2.1
for stable transfer-function operators 

 

P, 

 

∆

 

 :  

 

with 

 

P, 

 

∆ ∈

 

 ; 

 

if the

 

 

 

–norm of the loop gain
is bounded by unity such that 

 

, 

 

then:

 

 

 

1. the closed-loop system is well-posed and internally stable

 

.

 

2. a unique

 

 

 

y

 

, 

 

w

 

 

 

∈

 

  

 

is associated with each

 

 

 

u

 

 

 

∈

 

 .

This small gain theorem is overly restrictive in the sense of requiring P, 

 

∆

 

 

 

∈

 

 . A more general
small gain theorem is formulated for operators not restricted to lie in the subspace ; theorem 2.3.1 is
a special case of this general theorem.

 

18

 

 The extended operator space in the general small gain theorem
allows consideration of robustness for systems composed of nonlinear and time-varying operators. The
requirement of considering stable, rational, transfer-function operators is explicitly stated in the theorem
to emphasize that the nominal aeroelastic system considered in this paper is assumed to be stable and the
flutter margin is associated with a destabilizing perturbation to that nominal system.

H∞
H∞

H∞
H∞

H∞ P  :   P  is  analytic  in  Re s ( ) 0  and  P ∞ ∞<>{ } =

RH∞

RH∞ H∞ H∞

RH∞ H∞

RH∞
RH∞

RH∞

H∞

L2 L→
2

RH∞ H∞
P∆ ∞ 1<

L2 L2

RH∞
RH∞
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Figure 2.1. Block diagram for the small gain theorem.

The second condition in theorem 2.3.1 is associated with the first condition guaranteeing a well-posed
and stable system. This uniqueness condition can be understood by consideration of the solution y for the
loop equations shown in figure 2.1. 

(17)

The inverse term, , has a magnitude of infinity if the norm of  is allowed to be unity.
Such a condition would allow the norm of signal y to be infinite despite a norm-bounded u input signal.
Restricting  ensures the inverse term exists and a unique finite-norm y is generated in response
to a finite-norm u. The issue of well-posedness requires this condition to hold at  and is automati-
cally considered by the –norm.

 

2.4 Robust Stability

 

The small gain theorem can be directly used to analyze robust stability of a plant model with respect
to a set of perturbations.

 

19

 

 These perturbations are used to describe uncertainty in the analytical plant
model caused by errors and unmodeled dynamics. Usually, the exact value of the modeling error is not
known, but a norm-bounded, real scalar, 

 

α

 

 > 0, can be placed on the size of that error. Define the 

    

ÆÆÆÆ

 

of  norm-bounded operators describing these perturbations that affect the plant P through a
feedback relationship.

    

ÆÆÆÆ

 

 

 

= (18)

The small gain theorem allows consideration of the entire set of possible modeling uncertainties as
described by all 

 

∆ ∈ 

    

ÆÆÆÆ

 

. The –norm of the loop gain cannot be explicitly computed for these systems
because an infinite number of loop gains  generated by the 

    

ÆÆÆÆ

 

 exists. The triangle inequality of norms
can be used to generate a sufficient condition for robust stability of P.

(19)

A condition for robust stability of the closed-loop system can be stated.

 

Lemma 2.4.1:

 

  

 

The plant 

 

P

 

 is robustly stable to the set of uncertainty perturbations,

 

 

    

ÆÆÆÆ

 

, that enter the
system as in figure 2.1 with

 

  for all ∆ ∈ ÆÆÆÆ if 

∆

Py u

w

970969

y P u w+( )=

I P∆–( ) 1–
Pu=

I P∆–( ) 1–
P∆

P∆ ∞ 1<
s ∞=

H∞

∆  :  ∆ ∞ α≤{ }

H∞
P∆

P∆ ∞ P ∞ ∆ ∞≤

∆ ∞ α≤
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(20)

Lemma 2.4.1 shows a sufficient, but not necessary, condition for robust stability. The structured
singular value, 

 

µ

 

, is introduced in the next chapter as a less conservative measure of robust stability that is
sufficient and necessary.

An excellent illustrative example has previously been presented

 

18

 

 to demonstrate the issue of robust
stability. This example uses classical arguments to compute a robust stability condition for a simple
system that is seen to be identical to the robust stability condition generated using the small gain theorem
and lemma 2.4.1. A similar example is given below for the feedback interconnection in figure 2.2.

Figure 2.2. Block diagram with uncertainty for the example system.

The single-input and single-output elements in the nominal system model (fig. 2.2) are p, which
represents the plant dynamics; a, which represents actuator dynamics; and k, which represents a feedback
controller. Each of the nominal system elements are stable transfer functions contained in . A
modeling error exists on the output of the actuator that is represented by a multiplicative uncertainty
operator, 

 

δ

 

 

 

∈

 

 , on the output of the element a.

The transfer function from w to z can be computed as follows.

(21)

Internal stability of the closed-loop feedback system is equivalent to stability of the feedback system
shown in figure 2.3 with the operator .

Figure 2.3. Block diagram for robust stability analysis of the example system using the small gain
theorem.

P ∞
1
α
---<

δ

a p

k

wz

970970

RH∞

RH∞

z 1 akp+( ) 1–
akp– 

 w=

g 1 akp+( ) 1–
akp–=

δ

g

z w
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Because the operators 

 

δ

 

, g 

 

∈

 

  are stable, the Nyquist criterion determines the closed-loop
system is stable if and only if the Nyquist plot of 

 

δ

 

g does not encircle the –1 point. This stability condi-
tion is equivalent to the following norm condition.

(22)

This condition is an –norm condition on the loop gain, g

 

δ

 

. Thus, classical Nyquist arguments
derive an –norm condition that is equivalent to the stability condition immediately formulated by
applying the small gain theorem.

(23)

The error in the actuator command is unknown and possibly time-varying, so the operator 

 

δ 

 

is used to
allow consideration of a range of errors. Assume the actuator is weighted such that the range of errors is
described by the set of perturbations, . Lemma 2.4.1 is used to generate a condition that ensures
the system is robustly stable to all actuators errors described by 

 

δ

 

.

(24)

RH∞

sup  
ω

 g j   ω( )  δ j   ω( ) 1 <

H∞
H∞

closed-loop stability       g δ ∞ 1 <⇔

δ ∞ 1<

closed-loop stability       g ∞ 1 <⇐
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CHAPTER 3
STRUCTURED SINGULAR VALUE

3.1  Linear Fractional Transformations

 

The linear fractional transformation (LFT) is a common framework suitable for robust stability

analysis using arguments based on the small gain theorem. An LFT is an interconnection of operators

arranged in a feedback configuration. These operators can be constant matrices, time-domain state-space

systems, or frequency-varying transfer functions. Consider a linear operator P 

 

∈

 

  that

is partitioned into four elements.

(25)

The LFT, , is defined as the interconnection matrix such that the upper loop of P is closed

with the operator 
 

∆
 

 
 

∈
 

 .
 

Definition 3.1.1:

 

  

 

Given

 

 P 

 

∈

 

  

 

and

 

 

 

∆

 

 

 

∈

 

 , 

 

define

 

 ) 

 

as the upper-
loop LFT of 

 

P

 

 closed with

 

 

 

∆

 

 

 

such that

 

 y =  u 

 

as in figure 3.1

 

.

(26)

Figure 3.1 Linear fractional transformation (P, 

 

∆

 

).

A similar LFT is defined as to represent the interconnection matrix of the lower loop of

P closed with an operator 

 

∆

 

 

 

∈

 

 .

 

Definition 3.1.2:

 

  

 

Given

 

 P 

 

∈

 

  

 

and

 

 

 

∆

 

 

 

∈

 

 , 

 

define

 

 

 

as the lower-loop
LFT of 

 

P

 

 closed with

 

 

 

∆

 

 

 

such that 

 

y =  u 

 

as in figure 3.2

 

.
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Figure 3.2. Linear fractional transformation (P, ∆).

An example of an interconnection that is common in stability analysis is the representation of a time-
dependent state-space system as a frequency-varying transfer function. Define S as the constant matrix
whose entries are the , , ,  matrices of a state-space realization. The transfer function can be
written as an upper-loop LFT involving S and the Laplace transform variable s where  is an integrator. 

(28)

The LFT is a useful framework for analyzing complex systems with many feedback and series
interconnections of operators. Property 3.1.3 shows the main property of LFTs that will be used herein.
This property allows complex systems of several interconnected LFTs to be expressed as an equivalent
single LFT. The operators of the new LFT are block-structured with blocks composed of the individual
operators of the LFTs from the original system.

Property 3.1.3:  Feedback and series interconnections of LFTs can be formulated as a single LFT.

This issue of stability for LFT systems is associated with the concept of a well-posed interconnection.
Stability analysis based on the small gain theorem given in theorem 2.3.1 can be used to guarantee the
LFT is stable and well-posed.

3.2  Structured Uncertainty

The concept of uncertainty is formulated as a set of norm-bounded operators, ÆÆÆÆ, associated with a
nominal plant, P, through an LFT feedback relationship. A family of plants, P, arises through consider-
ation of  for every ∆ ∈ ÆÆÆÆ. The true plant model is assumed to lie within this family of plants.

Modeling the uncertainty as a norm-bounded operator can lead to overly conservative models. The
uncertainty description can be made more accurate by including frequency information. Formulating a
model of a physical system that is accurate at low frequencies but less accurate for representing the
system response at high frequencies is often possible. A frequency-varying transfer function, W, is gener-
ally associated with each uncertainty element to describe magnitude and phase uncertainty as it varies
with frequency. 

Uncertainty can enter a system model in a linear fractional manner in several general ways. Two
typical types of uncertainty are termed “multiplicative” and “additive” uncertainty. Multiplicative

∆
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uncertainty can be either on the input or output of a system. Systems with these types of uncertainty are
easily described in block diagram form. Figure 3.3 shows the LFT for a plant with input multiplicative
uncertainty. Figure 3.4 shows the plant with output multiplicative uncertainty. Figure 3.5 shows
additive uncertainty.

Figure 3.3. Family of plants 

 

P

 

 = P(I + 

 

∆

 

 W) with input multiplicative uncertainty.

Figure 3.4. Family of Plants 

 

P 

 

= (I + 

 

∆

 

 W)P with output multiplicative uncertainty.

Figure 3.5. Family of plants 

 

P

 

 = P + 

 

∆

 

W with additive uncertainty.

Uncertainty can also be associated with specific elements of the system. These parametric uncertain-
ties are usually associated with a system operator in a feedback relationship. The number of input and
output signals of the system operator is increased to account for the additional feedback signals associ-
ated with the uncertainty operator. This operation can be demonstrated by considering 

 

P 

 

generated by a
system with an unknown pole.

 

P

 

 = (29)

A norm-bounded, real, scalar, uncertainty parameter 

 

δ

 

 can be introduced to account for the possible
variation in pole value. The set of plants can be written in the LFT framework using this uncertainty oper-
ator and definition 3.1.1.
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P

 

 = (30)

A complex system with several uncertainty operators can be expressed as an LFT with a single uncer-
tainty operator using property 3.1.3. This operator is structured as a block-diagonal operator with each
block associated with the individual uncertainty operators. Two main types of uncertainty blocks exist. A
full-block uncertainty is a matrix with unknown elements. This type of block is used to describe unstruc-
tured uncertainty in a group of signals.

 

Definition 3.2.1:

 

 

 

 

 

A full-block uncertainty, 

 

∆

 

 

 

∈

 

 , has unknown elements  for every 

 

i 

 

∈

 

 [1, n]

 

and

 

 j 

 

∈

 

 [1, m].

A repeated-scalar block introduces more structure into the uncertainty description than a full block
does. Only the diagonal elements of the matrix contain unknown elements; the remaining elements are
zero. Furthermore, the diagonal elements are identical. This type of uncertainty is used to relate input-
output signal pairs with the same uncertainty parameter.

 

Definition 3.2.2:

 

  

 

A repeated-scalar block uncertainty

 

 

 

∆

 

 

 

∈

 

  

 

has zero-valued elements except
an unknown parameter 

 

δ

 

 along the diagonal such that . A scalar block is a repeated-scalar
block of dimension 

 

1

 

.

 

The single structured uncertainty block used for robust stability analysis is formally defined in terms
of these blocks. Let integers m, n, and p define the number of real scalar, complex scalar, and complex
full blocks respectively. Define integers  such that the  repeated-scalar block of real, para-
metric uncertainty is of dimension . Define similar integers  to denote the dimension
of the complex repeated-scalar blocks. The structured uncertainty description 

 

∆

 

 is assumed to be norm-
bounded and belonging to the following set.

(31)

Real parametric uncertainty is allowed to enter the problem as scalar or repeated-scalar blocks.
Complex uncertainty enters the problem as scalar, repeated-scalar, or full blocks. Complex uncertainty
parameters allow uncertainty in magnitude and phase to be modeled; uncertainty in physical characteris-
tics can be more accurately modeled with real parameters. The robustness analysis will be less
conservative by accounting for this structure to accurately describe the model uncertainty.

 
3.3  Structured Singular Value

 

Figure 3.6 shows the general framework for robust stability analysis. The plant operator P(s) 

 

∈

 

 
is a stable, rational, transfer-function matrix representing the aeroelastic dynamics. A norm-bounded

    

ÆÆÆÆ

 

 

 

∈

 

  is defined such that 

 

∆

 

 

 

(s)

 

 

 

∈

 

 

    

ÆÆÆÆ    

 

describes the modeling errors in P through a feedback relationship.
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Figure 3.6. Linear fractional transformation system for robust stability analysis using 

 

µ

 

.

The robustness of P with respect to the 

    

ÆÆÆÆ    

 

can be determined using the small gain theorem as
presented in lemma 2.4.1. This condition guarantees stability for any value 

 

∆

 

 

 

∈

 

 

    

ÆÆÆÆ

 

 if . This
robustness condition can be overly conservative because it does not account for structure in the uncer-
tainty operator. The structured singular value, 

 

µ

 

, is defined as an alternative measure of robustness.
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Definition 3.3.1:

 

  

 

Given the complex transfer-function matrix 

 

P 

 

∈

 

  

 

and associated norm-
bounded set of uncertainty operators

 

 

    

ÆÆÆÆ

 

, 

 

define

 

 

 

µ

 

.

(32)

 

Define

 

 

 

µ 

 

= 0 

 

if no

 

 

 

∆

 

 

 

∈

 

 

    

ÆÆÆÆ

 

 

 

exists such that 

 

 

 

det(I – P 

 

∆

 

) = 0.

The structured singular value is an exact measure of robust stability for systems with structured
uncertainty. The value of 

 

µ

 

 determines the allowable size of uncertainty matrices for which the plant is
robustly stable as demonstrated in theorem 3.3.2.

 

20

 

Theorem 3.3.2:

 

  

 

Given the system in figure

 

 3.6, P 

 

is robustly stable with respect to the 

 

 

    

ÆÆÆÆ

 

, 

 

which is
norm-bounded by real scalar

 

 

 

α 

 

such that

 

  

 

for all

 

 

 

∆

 

 

 

∈

 

 

    

ÆÆÆÆ

 

 

 

if and only if

 

 .

The model P is usually internally weighted such that the range of modeling errors is described by the
uncertainty set 

    
ÆÆÆÆ

 
, which is norm-bounded by 1.

 
 

for all
 

 (33)

Theorem 3.3.3 presents the specific condition for robust stability that will be used in this paper for
unity norm-bounded uncertainty sets.

 

Theorem 3.3.3:

 

  

 

Given the system in figure 3.6,

 

 P

 

 is robustly stable with respect to the 

    

ÆÆÆÆ

 

 

 

with
 for all  if and only if 

 

µ

 

(P) < 1.

A value of 

 

µ

 

 < 1 implies no perturbation within 

    

ÆÆÆÆ    

 

exists that will destabilize the feedback system.
This condition can also be interpreted as saying the true plant dynamics are stable, assuming these
dynamics lie within the range generated by the nominal model dynamics coupled with the set of
modeling errors.
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Obviously, 

 

µ

 

 is dependent on the block structure of 

    

ÆÆÆÆ

 

. The robust stability properties computed by 

 

µ

 

will only be accurate if a realistic uncertainty operator is chosen. The structured singular value may be
arbitrarily greater when computed with respect to an unstructured uncertainty operator as compared to a
highly structured uncertainty operator. Definition 3.3.1 demonstrates the 

 

µ 

 

condition of theorem 3.3.3 is
equivalent to the small gain condition of lemma 2.4.1 when the uncertainty is unstructured.

Unfortunately, 

 

µ 

 

is a difficult quantity to compute. Closed-form solutions exist to exactly compute 

 

µ

 

for only a small number of block structures for 

    

ÆÆÆÆ

 

. Upper and lower bounds are used to compute 

 

µ 

 

for
generalized uncertainty block structures. Appendix A shows a derivation of the upper bound, which rep-
resents a limit on the worst-case robustness properties.
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CHAPTER 4
ROBUST FLUTTER MARGINS

4.1 Nominal Aeroelastic Model

 

Consider the generalized equation of motion for the structural response of the aircraft.

 

21

 

(34)

For a system with n modes, define  as the mass matrix,  as the damping matrix,
and  as the stiffness matrix. Define  as a scalar representing the dynamic pressure, and

 as the matrix of unsteady aerodynamic forces. This equation is valid for a particular Mach
number, with a different Q(s) describing the unsteady aerodynamic forces at a different Mach number.

Values of the aerodynamic force matrix at distinct frequencies can be derived using finite-element
models of the aircraft and panel methods for unsteady force calculations. This research uses a computer
program developed for NASA known as STARS.
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 This code solves the subsonic aerodynamic equa-
tions using the doublet-lattice method.
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 The supersonic forces are generated using a different
approach known as the constant panel method.
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Formulating a linear time-invariant representation of the aerodynamic forces to incorporate them into
the robust stability framework is desired. Padé approximations can be used to compute a rational function
approximation to the transfer-function matrix.

(35)

This form is often referred to as Roger’s form.

 

27

 

 The equation presented here includes only two lag
terms, although more terms can be included. The poles of the lag terms,  and , are restricted to be
real and positive to maintain system stability. The matrix elements of Roger’s form can be computed
using a least-squares algorithm to fit the frequency-varying aerodynamic data.

The aerodynamic lag terms can be replaced in the formulation with a finite-dimensional state-space
system represented by a transfer-function matrix using Karpel’s method.
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(36)

Standard system identification algorithms, including curve-fitting or least-squares approaches, can be
used to compute the elements in the state-space portion of the formulation. The  matrices are assumed
to be known from the low-frequency aerodynamic force data or from experimental wind-tunnel data.

A matrix fraction approach is also formulated to represent the aerodynamic forces as a linear time-
invariant system.
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 This generalized form computes rational matrix polynomials in a fractional form
using a least-squares algorithm. Roger’s form and Karpel’s form can be shown to be subsets of the matrix
fractional form.
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The approach taken in this paper is to fit the aerodynamic force matrices to a single, finite-
dimensional, state-space system. This form is most similar to Karpel’s form, except the additional 
matrices are not explicitly accounted for in the formulation.

(37)

Given the number of generalized states, n, and the number of aerodynamic states, , define

 ∈ ,  ∈ ,  ∈ , and  ∈  as the elements of the state-space

system approximating Q(s).

Fitting the aerodynamic data to a finite-dimensional state-space system is equivalent to fitting each
term in the matrix to a real, rational, proper, transfer function. This method seems to contradict the
methods of Roger and Karpel, which form nonproper transfer functions caused by the terms in s and .
An approximation to these forms allows them to fall within the framework of the method used in this
paper. Including a high-frequency pole in the nonproper term, such as replacing s with , would
not affect the low-frequency region of interest while ensuring stable and proper functions. With the
approximation, the forms of Roger and Karpel can be shown to be subsets of this method.

Standard frequency-domain system identification algorithms can generate a system with an arbitrarily
large number of states. This state dimension does not greatly affect the computational cost of the robust
stability analysis. Extending the robustness analysis to controller synthesis, however, places an emphasis
on limiting the state dimension.31 Limiting the number of states in the identification process is not
directly considered here, although standard model reduction techniques can be used on the state-space
system to lower the state dimension.15

Generating a state-space representation of the aeroelastic system, including the state-space form of
the unsteady aerodynamic forces, is straightforward. Consider the force vector, y, generated by the state
vector, η. Define x ∈  as the vector of aerodynamic states.

(38)

Using x, formulate the aeroelastic differential equation.

(39)
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A state-space system is formulated using the generalized states, 

 

η

 

 and , and the unsteady aerody-
namic states, x. The state-update matrix is determined by the following three differential equations.

(40)

 

4.2  Nominal Aeroelastic Model in the Structured Singular Value

 

 

 

Framework

 

The generalized equation of motion for the nominal aeroelastic system can be expressed in a form
suitable for using 

 

µ 

 

analysis to compute a flutter margin. The flutter margin is dependent on the flight
condition parameters that result in a flutter instability, and 

 

µ 

 

is defined to be the smallest perturbation
among the 

    

ÆÆÆÆ

 

 that causes an instability. The obvious approach to formulating flutter analysis in the 

 

µ

 

framework is to introduce a perturbation to a flight condition parameter and find the smallest perturbation
that causes an instability.

Essentially, the two subsystems in the nominal aeroelastic model are composed of the structural
dynamics, involving mass, damping, and stiffness matrices; and the unsteady aerodynamics scaled by the
dynamic pressure. The generalized equation of motion demonstrates the dynamic pressure linearly affects
the dynamics at a constant Mach condition. Perturbations to dynamic pressure can thus enter the system
through a feedback operator in a linear fractional manner that is perfectly suited to 

 

µ

 

 analysis.

Consider an additive perturbation,  

 

∈

 

 

 

R

 

, on the nominal dynamic pressure, .

 =  + (41)

Separate terms in the system dynamics that involve . 

(42)

The signals z and w are introduced into this formulation to associate the perturbation in dynamic pres-
sure to the nominal dynamics in a feedback manner. The signal z can be generated as an output of the
plant because z is a linear combination of states.

(43)
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The signal w is related to z by the dynamic pressure perturbation.

w =  z (44)

The state-space aeroelastic model for nominal stability analysis in the µ framework is formulated
using the state-update matrix. This matrix is determined by the dynamics at the nominal dynamic pres-
sure, and the additional input and output signals that introduce perturbations to the dynamic pressure.
That perturbation, , is not an explicit parameter in the state-space model because  only affects the
plant through a feedback relationship as determined by the signals z and w. Define the transfer function
P(s) generated by state-space matrices such that z = P(s)w.

(45)

Figure 4.1 shows the feedback interconnection between the perturbation in dynamic pressure and the
nominal plant model parameterized around that perturbation. This interconnection is an LFT, and the
small gain condition of lemma 2.4.1 or the µ condition of theorem 3.3.3 can be directly applied to analyze
stability with respect to a variation in the flight condition .

Figure 4.1. Linear fractional transformation system for nominal stability analysis in the µ framework with
parameterization around perturbation in dynamic pressure.

Formulating the nominal aeroelastic dynamics in the µ framework immediately demonstrates the pro-
cedure used in computing a flutter margin. Traditional flutter analysis algorithms such as the p-k method
and the µ method as applied to figure 4.1 are searching for a value of dynamic pressure that results in a
flutter instability. The nominal flutter margin question may be posed, which is answered by these methods.

Question 4.2.1 (nominal flutter margin): What is the largest perturbation to dynamic pressure for
which the nominal aeroelastic dynamics are stable?

The dimension of the uncertainty block is the dimension of the signal z. The state-space equations for
P(s) demonstrate this dimension is the number of modes in the system, n. The number of free variables in
the µ upper-bound optimization, and consequently the computational cost of µ, is a function of the
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uncertainty dimension. In this way, the number of aerodynamic states, , does not directly affect the cost
of the flutter estimation. The only cost increase caused by these additional states is computing the fre-
quency response of the state-space matrix, which is generally much lower than the cost of computing 

 

µ

 

.

Demonstrating the aeroelastic system formulated in the 

 

µ

 

 framework in figure 4.1 is straightforward.
The dynamic pressure parameterization is equivalent to the nominal state-space system given in the pre-
vious section. Simply compute the closed-loop transfer function with no uncertainty,  = 0, and the
nominal system is recovered.

Wind-tunnel and ground vibration testing can experimentally determine aerodynamic stiffness and
damping matrices that are more accurate than the matrices approximated by a finite-element model.
These matrices can be incorporated into a nominal state-space model in the 

 

µ

 

 framework using the deri-
vation in Appendix B.

This procedure considers variations in dynamic pressure for an aeroelastic model at constant Mach
number. The unsteady aerodynamics are highly nonlinear with variation in Mach number, and attempts to
model Mach variations in an LFT may produce highly conservative flutter margins.
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 The 

 

µ

 

 method
presented herein is considering flutter margins in terms of dynamic pressure as measured along lines of
constant Mach. Flutter is a function of the two variables, dynamic pressure and Mach, so computing the
dynamic pressure causing flutter for a dense set of discrete Mach values will generate an accurate portrait
of the flutter margins.

 

4.3  Robust Aeroelastic Model in the Structured Singular Value

 

 

 

Framework

 

A robust aeroelastic model in the 

 

µ 

 

framework can be generated by associating uncertainty operators,

 

∆, 

 

with the nominal model and including the parameterization around a perturbation in dynamic pressure.
These uncertainty operators can resemble any of the forms presented in section 3.2, including parametric
uncertainty and additive and multiplicative representations of dynamic uncertainty.

Choosing a reasonable uncertainty description is crucial for determining a valid robust flutter margin.
This choice can arise logically from consideration of weaknesses in the modeling process, previous
experience with aeroelastic analysis, and comparison with observed flight dynamics. Chapter 5 gives a
noncomprehensive examination of several obvious uncertainty descriptions that may be associated with
an aeroelastic model.

The LFT is a valuable framework for formulating the robust aeroelastic model so that the model is
suitable for 

 

µ

 

 analysis. The various system blocks composed of the nominal state-space model with asso-
ciated uncertainties and any additional subsystem blocks and their associated uncertainties can be
expressed as a single model and uncertainty operator.

Figure 4.2 shows the block structure used for 

 

µ

 

 analysis of the uncertain aeroelastic system. The
structured singular value is computed with respect to a single, block-diagonal, structured operator that
contains the perturbation to dynamic pressure and the structured uncertainty operator along the diagonal.
The perturbation to dynamic pressure is explicitly shown to distinguish  from the modeling uncer-
tainty and emphasize  as a special operator used to describe a range of flight conditions.

nQ

δq

δq
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Figure 4.2. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework with
parameterization around perturbation in dynamic pressure and structured uncertainty.

The flutter margin computed for the uncertain system (fig. 4.2) is a more accurate margin than one
computed with traditional methods such as p-k. These traditional methods address the nominal flutter
problem in question 4.2.1; the robust flutter margin must consider the effect of the modeling uncertainty.
The robust flutter margin actually finds the smallest perturbation to dynamic pressure for the entire set of
plants formulated by the interconnection of the nominal dynamics and all elements 

 

∆

 

 

 

∈

 

 

    

ÆÆÆÆ

 

. Question 4.3.1
poses how to compute these margins.

 

Question 4.3.1 (robust flutter margin): 

 

What is the largest perturbation to dynamic pressure for
which the nominal aeroelastic dynamics are robustly stable to the entire range of modeling errors as
described by the norm-bounded 

    

ÆÆÆÆ

 

?

 

This question can be answered by computing 

 

µ

 

 for the system in figure 4.2.

 

4.4  Computing a Flutter Margin with the Structured Singular Value

 

The nominal flutter problem posed by question 4.2.1 and the robust flutter problem posed by
question 4.3.1 can be solved as a 

 

µ

 

 computation. The value of 

 

µ

 

 is a sufficient direct indication of the
flutter margin for the nominal system; additional information regarding the norm bound on the uncer-
tainty is required to derive the robust flutter margin.

The nominal aeroelastic model is formulated for stability analysis in the 

 

µ

 

 framework in section 4.2 by
introducing a perturbation, , to dynamic pressure. A nominal flutter margin is computed to answer ques-
tion 4.2.1 by considering the smallest value of this perturbation that destabilizes the model. The nominal
flutter pressure can be directly calculated by computing 

 

µ

 

 with respect to the perturbation operator .

The exact value of 

 

µ

 

 can be analytically formulated to compute a nominal flutter pressure because a
closed-form solution for 

 

µ

 

 with respect to a single, real, scalar operator is known. This solution is the
spectral radius of the frequency-varying transfer-function matrix. 

(46)

The spectral radius of  is a discontinuous function of frequency, so computational algorithms
based on searches over a finite set of frequency points may not guarantee the correct computation of
robustness values. A small amount of complex uncertainty can be added to the real uncertainty that
allows a continuous 

 

µ

 

 function to be analyzed but introduces unrealistic conservatism. An heuristic
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robustness indicator can be substituted for 

 

µ

 

 that considers stability over a frequency segment but is not
considered here.

 

34, 35

 

A relatively simple approach can be used to compute 

 

µ

 

 with respect to a single real parameter by
considering the destabilizing value of the parameter. A search over the parameter space will result in
computation of 

 

µ

 

 and the desired flutter margin. Lemma 4.4.1 presents the principle of this approach.

 

Lemma 4.4.1:

 

  

 

Given the plant, 

 

P,

 

 derived at nominal dynamic pressure, , with a perturbation to
dynamic pressure, , arranged in the feedback relationship of figure 4.2, define 

 

δ

 

.

Then  such that  is the nominal flutter pressure and

represents the nominal flutter margin answering question 4.2.1.

 

Proof:

 

This result is immediately obvious using definition 3.3.1 for 

 

µ

 

 with respect to a scalar uncertainty
parameter . The 

 

µ

 

 is the inverse of the smallest destabilizing perturbation, and 

 

δ 

 

is computed as the
smallest value of  that destabilizes P; thus .

Lemma 4.4.1 indicates a computational strategy to compute a nominal flutter margin that does not
require a search over a set of frequency points. The flutter pressure is found by increasing values of 
until an eigenvalue of the state matrix of (P, ) has a negative real part indicating (P, ) is unsta-
ble. Algorithm 4.4.2 demonstrates a bisection search implementation that efficiently computes upper and
lower bounds on the minimum destabilizing  perturbation to within a desired level of accuracy.

 

Algorithm 4.4.2 (nominal flutter margin):

 

Given plant 

 

P

 

 at nominal dynamic pressure, , affected by perturbation  as in figure 4.1:
Define scalars  as bounds on the smallest destabilizing .
Define scalar 

 

ε

 

 > 0   

 

for accuracy.

 

while   {

 

  if (

 

P

 

, ) has an unstable pole), then

  else  

}
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Robust flutter margins that address question 4.3.1 cannot be computed using algorithm 4.4.2 because
an additional search over the set of uncertainty operators ÆÆÆÆ must be included. These margins must be
computed using the augmented plant P, which includes feedback signals relating the perturbation to
dynamic pressure and the uncertainty description as shown in figure 4.2. Define the block-structured set
of operators, , which considers a particular perturbation  and set of operators ÆÆÆÆ describing
model uncertainty.

(47)

A set of plant models, , exists for each value of  that defines the nominal plant at

dynamic pressure  =  +  and variations to that plant caused by the set of uncertainties ÆÆÆÆ. The

robust flutter margin corresponds to the smallest perturbation  for which an unstable plant, ,

exists with . If every member of the set of plants  is stable, then  =  +  is not

a flutter pressure and P formulated at  is robustly stable to the uncertainty description ÆÆÆÆ.

The smallest destabilizing perturbation  corresponding to a robust flutter margin can be computed
by a µ computation. The µ framework analyzes robustness with respect to a single, structured operator, so
the operator set used to compute a robust flutter margin must contain the set of uncertainty operators ÆÆÆÆ
along with a range of dynamic pressure perturbations. The µ will compute the robustness of P with
respect to this operator set to find the smallest destabilizing perturbation to dynamic pressure and the
smallest destabilizing uncertainty operator. Define the  that contains  sets for a norm-bounded set
of  operators.

(48)

Imposing the norm bound for  operators as  may seem overly restrictive because the

units of  are the same as the units of  in the model. This condition implies the  considers the range

of flight conditions  =  ± 1 lbf/ft2 for plants formulated by dynamic pressure in units of lbf/ft2. Such

a small range of flight conditions is not useful for stability analysis unless  is extremely close to the

flutter pressure. This limitation is avoided by introducing a weighting function, , to the computation

of .

 =  + (49)

A  >1 allows a large range of flight conditions to be considered despite the unity norm-bound

constraint on . This weighting is incorporated into the stability analysis by scaling the feedback signals

between the  operator and the plant P to form the scaled plant, .
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(50)

A robust flutter margin is computed by analyzing 

 

µ

 

( ) with respect to the . The robust flutter
pressure is determined by iterating over scalings  until the smallest pressure  =  +  is found
for which the  is robustly stable to the set of uncertainties 

    

ÆÆÆÆ

 

. Theorem 4.4.3 formally demonstrates
this concept.

 

Theorem 4.4.3:

 

  Given the plant 

 

P

 

 derived at nominal dynamic pressure  with a perturbation to
dynamic pressure  and set of uncertainty operators 

    

ÆÆÆÆ

 

 norm-bounded by one arranged in the feedback
relationship of figure 4.2, define the plant  with real diagonal matrix  scaling the feedback signals
relating  and 

 

P

 

.

 

(51)

 

Then  =  +  is the robust flutter pressure if and only if 

 

µ

 

( ) = 1

 

. Also,

 

 =  (52)

 

represents the least conservative robust flutter margin answering question 4.3.1.

 

Proof

 
 (necessary)

The condition 

 
µ

 

( ) = 1 implies that the smallest destabilizing perturbation to  is described by some
 with , so no destabilizing  exists and the smallest positive destabilizing perturba-

tion to dynamic pressure is at least  = 1, which corresponds to dynamic pressure  =  +  =
 + . Thus,  is guaranteed to be robustly stable to the uncertainty set 

    

ÆÆÆÆ

 

 for any perturbation to
dynamic pressure less than , so  is a robust flutter margin.

 (sufficient)

Assume 

 

µ

 

 > 1. Define real, scalar 

 

α

 

 < 1 such that , which implies, from theorem 3.3.2,

that  is robustly stable to all uncertainties  with . Thus,  is not guaranteed to be

stable over the entire range of modeling uncertainty defined by the unity norm-bounded set , so this

perturbation is not a valid robust flutter margin and does not answer question 4.3.1.

Assume 

 

µ

 

 < 1. Define real, scalar 

 

α

 

 > 1 such that , which implies, from theorem 3.3.2,

that  is robustly stable to all uncertainties  with . Thus,  is robustly stable to an

uncertainty description larger than that defined by the unity norm-bounded set , so this condition
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defines a valid flutter margin but is not the least conservative robust flutter margin and does not answer

question 4.3.1. 

The only difference between models  and P results from the scaling , which scales the feedback
signals between  and . No external scaling matrix is allowed to affect the feedback signals between

 and ∆ because ∆ is defined with a unity norm bound. Computing µ of the plant  with an additional
scaling on the lower-loop signals would consider a scaled set of operators ÆÆÆÆ that does not accurately rep-
resent the uncertainty description. Therefore,  only scales the  feedback signals.

Theorem 4.4.3 can be modified to compute a nominal flutter margin by changing the identity matrix

in the scaling used to compute  to a zero matrix. This modification eliminates the feedback interconnec-

tion between the model and the uncertainty description ÆÆÆÆ, so µ considers only the nominal dynamics and

computes the smallest destabilizing perturbation to dynamic pressure and .

Including the uncertainty description ÆÆÆÆ ensures the robust flutter margin will be no greater than the
nominal flutter margin. The robust flutter margin considers the model used to compute the nominal flutter
margin that corresponds to the uncertainty operator  and the models that correspond to the
remaining operators . The conservatism in the robust flutter margin makes intuitive sense because
the nominal flutter margin is the worst-case stability boundary for a single model and the robust flutter
margin is the worst-case stability boundary for a family of models.

(53)

The proof demonstrating the necessary and sufficient condition µ  = 1 also makes intuitive sense
because the equality sign is needed to ensure the flutter margin is valid without being overly conserva-
tive. If µ  < 1, then no  causes an instability and the flutter margin is too conservative. If
µ  > 1, then the system is not robust to all modeling errors  and the flutter margin is not a valid
robust flutter margin.

Theorem 4.4.3 demonstrates a robust flutter margin can be computed by determining a scaling matrix
 for which µ  = 1. Algorithm 4.4.4 implements an iterative approach to compute a scaling matrix

for which µ( ) ∈ (1 ± ε) for some desired level of accuracy ε. 

Algorithm 4.4.4 (robust flutter margin):

Given plant P at nominal dynamic pressure  affected by unity norm-bounded  and ÆÆÆÆ as in
figure 4.2:
Define initial weighting .

Define scalar   ε > 0   for accuracy.
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while {

}

 =  + 

 = 

The dynamic pressure  defining the flight condition for the nominal plant dynamics must be chosen
carefully to ensure the robust flutter margin computed with algorithm 4.4.4 is valid. The nature of µ and
the upper bound is such that all norm-bounded operators centered around the origin are assumed to be
valid perturbations to the plant dynamics, so positive and negative perturbations to dynamic pressure are
considered by the robust stability analysis. Thus, the robust flutter margin computed by µ( ) = 1 could
correspond to either perturbation  = 1 or  = –1.

The actual dynamic pressure at the flutter instability is  =  –  if  = –1. A large weighting
of  >  indicates the flutter occurs at a negative dynamic pressure that may be unrealistic for classical
flutter analysis. The value of the nominal dynamic pressure  can slide along the real axis to a large value
without loss of generality in the µ analysis because this parameter linearly affects the nominal dynamics.
A simple approach to ensure that the robust flutter pressure is a positive dynamic pressure is demonstrated
in algorithm 4.4.5, which iterates over increasing values of  until the scaling associated with the robust
flutter margin satisfies  < .

Algorithm 4.4.5 (robust flutter margin with  iteration):

Given parameters as in algorithm 4.4.4:
Given initial value of nominal dynamic pressure :

valid_margin = FALSE
while (valid_margin == FALSE)   {

compute plant P at nominal dynamic pressure 

compute  and associated  from algorithm 4.4.4

if (  > ), then  = 1.1 

else valid_margin = TRUE
}

The exclusion of low and negative dynamic pressures for stability analysis may not be desirable for
all applications related to aeroelasticity. An example of such an application is the analysis of aeroser-
voelastic dynamics for a high-angle-of-attack aircraft that concerns instabilities at low dynamic
pressures.36 The procedure for these types of analysis chooses a low value of  and finds the scaling
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 corresponding to  = –1, which computes the low dynamic pressure instability. Algorithm 4.4.5
can be modified for these applications.

The flutter margin computation must allow for an arbitrary structure of operators , so an upper
bound such as the function derived in appendix A must be used. Algorithms 4.4.4 and 4.4.5 can be
adapted by replacing the 

 

µ

 

 calculation with a 

 

µ

 

 upper-bound calculation to compute flutter margins. A
search over frequency points is required when using the upper bound (appendix A), so the accuracy of the
robust flutter margin requires a dense grid of frequencies associated with the natural frequencies of the
worst-case dynamics to be considered.

A simple approach can be implemented if the natural frequency of the unstable dynamics at the nom-
inal flutter pressure can be assumed to be similar to the natural frequency of the unstable dynamics at the
robust flutter pressure. This assumption can be justified if the uncertainty does not change the critical
flutter mode between the nominal and robust flutter pressures, which is often true for systems that have
relatively small levels of uncertainty and clear separation between critical and subcritical modal frequen-
cies. Algorithm 4.4.6 presents this approach, which first computes the frequency of the nominal flutter
mode and then computes a robust flutter margin from the 

 

µ

 

 upper bound evaluated near that frequency.

 

Algorithm 4.4.6 (robust flutter margin with reduced frequency grid):

 

Given the system in figure 4.2:
Compute frequency 

 

ω

 

 associated with nominal flutter dynamics using algorithm 4.4.2.
Define dense frequency grid 

 

Ω

 

 centered around 

 

ω.

 

Compute robust flutter margin from 

 

µ

 

 upper bound evaluated at 

 

Ω

 

 using algorithm 4.4.5.

 

A large and dense frequency grid increases the confidence that computed robustness measure is actu-
ally an upper bound for 

 

µ

 

. Algorithm 4.4.6 must be used with caution because the assumptions behind its
use may not be satisfied. Computing a robust flutter margin with a dense frequency grid for a particular
aircraft at several Mach numbers and then comparing the frequencies of the flutter dynamics to those of
the nominal flutter dynamics is recommended. If these frequencies are similar, then algorithm 4.4.6 can
be considered for further analysis at different Mach numbers.

 

4.5  Properties of the Structured Singular Value as a Flutter Margin 

 

The flutter computation method described herein uses 

 

µ

 

 as the worst-case flutter parameter. The
structured singular value is a much more informative flutter margin than traditional parameters such as
pole location and modal damping, so 

 

µ

 

 presents several advantages as a flutter parameter. 

The conservatism introduced by considering the worst-case uncertainty perturbation can be interpreted
as a measure of sensitivity. Robust 

 

µ

 

 values that are significantly different than the nominal flutter margins
indicate the plant is highly sensitive to modeling errors and changes in flight condition. A small perturba-
tion to the system can drastically alter the flutter stability properties. Conversely, similarity between the
robust and nominal flutter margins indicates the aircraft is not highly sensitive to small perturbations.

Robustness analysis determines not only the norm of the smallest destabilizing perturbation but also
the direction. This information relates exact perturbations for which the system is particularly sensitive.
Thus, 

 

µ

 

 can indicate the worst-case flutter mechanism, which may naturally extend to indicate active and
passive control strategies for flutter suppression.

Wq δq

ÆÆÆÆ
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Damping is only truly informative at the point of instability because stable damping at a given flight
condition does not necessarily indicate an increase in dynamic pressure will be a stable flight condition.

 37 

The structured singular value computes the smallest destabilizing perturbation, which indicates the
nearest flight conditions that will cause a flutter instability. In this respect, 

 

µ

 

 is a stability predictor and
damping is merely a stability indicator.

These characteristics of 

 

µ

 

 make the worst-case flutter algorithm especially valuable for flight test
programs. Aeroelastic flight data can be measured at a stable flight condition and used to evaluate
uncertainty operators. Unlike damping estimation, the 

 

µ

 

 method does not require the aircraft to approach
instability for accurate prediction. The 

 

µ

 

 can be computed to update the stability margins with respect to
the new uncertainty levels. The worst-case stability margin then indicates what flight conditions can be
safely considered. 

Safe and efficient expansion of the flight envelope can be performed using an on-line implementation
of the worst-case stability estimation algorithm. Computing 

 

µ

 

 does not introduce an excessive computa-
tional burden because each F/A-18 flutter margin presented herein was derived in less than 2 min using
standard off-the-shelf hardware and software packages. The predictive nature of 

 

µ

 

 and the computational
efficiency allow a flutterometer tool to be developed that tracks the flutter margin during a flight test.
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 CHAPTER 5
UNCERTAINTY DESCRIPTIONS IN AEROELASTIC MODELS

5.1  Parametric Uncertainty in Structural Models

 

Parametric uncertainty denotes operators that describe errors and unmodeled variations in specific
elements and coefficients in dynamic system equations. Recall the generalized aeroelastic equation of
motion for state vector 

 

η ∈ .21

(54)

Robust flutter margins computed with the µ method are strongly affected by the choice of uncertainty
descriptions associated with these dynamics, so this uncertainty must be a reasonable indicator of poten-
tial modeling errors. Parametric uncertainty can be directly associated with the structural matrices to indi-
cate specific errors in the finite-element model.

Define an operator, , that describes additive uncertainty of a nominal stiffness matrix
. Associate a weighting matrix, , with this uncertainty such that a stability analysis

should consider a range of stiffness matrices described by all  with .

(55)

Parametric uncertainty can also be associated with structural elements in a multiplicative relationship.
Define an operator, , that describes multiplicative uncertainty of the nominal damping
matrix . A weighting  is again associated with the uncertainty such that the anticipated
range of damping matrices for robust stability analysis is described by all  with .

(56)

The choice of additive uncertainty for  and multiplicative uncertainty for  does not reflect any
generalized assumptions regarding the proper way to model errors in stiffness and damping; rather, each
type is included to demonstrate the different mathematical derivations. Additive and multiplicative
operators are common types of uncertainty models, so demonstrating how these types of uncertainty are
associated with a structural model is instructive. The actual choice of  and  is problem-dependent
and can vary with different aircraft and different finite-element modeling procedures.

The uncertainty operators are described in this section as  with real elements
because the operators describe perturbations to the generalized stiffness and damping matrices that are
usually real. These operators are often additionally constrained to be diagonal operators with n indepen-
dent parameters because the generalized stiffness and damping are often computed as real diagonal
matrices. The real and diagonal nature of these uncertainties is not required for µ analysis, so full-block
complex uncertainties can be used if they better describe the nature of the modeling errors.

Also, the weighting functions  are presented as constant and real matrices because
the functions are associated with constant and real stiffness and damping matrices. These constraints on

Rn

Mη̇̇ Cη̇ Kη qQ s( )η+ + + 0=

∆K  R ∈ n n
 

×

Ko WK  R ∈ n n
 

×

∆K ∆K  ∞ 1 ≤

K Ko WK  ∆ K +=

∆C R∈ n n×

Co WC R∈ n n×

∆C ∆C  ∞ 1 ≤

C Co I W+ C∆C( )=

∆K ∆C

∆K ∆C

∆K ∆,
C

R∈ n n×

WK W,
C

R∈ n n×



 

36

the weightings can be relaxed if the nature of the uncertainty is best described by complex and frequency-
varying weighting functions.

Substitute the uncertain K and C into the equation of motion, including the state-space representation
of the unsteady aerodynamic forces Q(s) presented in section 4.1. Introduce a perturbation, , to
dynamic pressure, and separate the nominal dynamics from the unknown terms.

(57)

The signals  and  are introduced in section 4.2 to relate the perturbation in dynamic pressure to
the nominal plant through a feedback relationship. The feedback operation  =  is used where 
is a linear combination of the states of the plant.

(58)

Additional signals are introduced to the plant formulation, where  and  are associated with the
uncertainty in the stiffness matrix, and  and  are associated with the uncertainty in the damping
matrix. The outputs of the plant  and  are formulated as linear combinations of the states.

(59)

The feedback mechanism to describe the modeling uncertainty uses a relationship between these out-
put signals and the  and  input signals.

(60)

The state-space plant matrix can be formulated using these additional input and output signals.
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(61)

Figure 5.1 shows how the uncertainty operators and perturbation to dynamic pressure affect this plant
formulation in a feedback manner.

Figure 5.1. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework with
parameterization around perturbation in dynamic pressure and uncertainty in structural stiffness and
damping matrices.

The formulation does not directly allow uncertainty in mass to be described by a feedback operator.
The LFT and 

 

µ

 

 frameworks require uncertainty operators to affect the nominal dynamics in a linear man-
ner, and this requirement precludes introducing mass uncertainty. The inverse of the mass matrix scales
most terms in the state matrix of P(s), including terms involving . Associating a mass uncertainty oper-
ator  with the mass matrix scaling  would introduce terms of , which is a nonlinear function
of uncertainty operators and cannot be directly considered by the 

 

µ

 

 method.

 

5.2  Parametric Uncertainty in Aerodynamic Models

 

The unsteady aerodynamic forces Q(s) 
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  can be represented as a state-space model with
 states.
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Parametric uncertainty can be associated with the matrix elements of this state-space representation to
describe errors. These errors can result from several sources in the modeling procedure, including
computational fluid dynamic algorithms that determine the frequency-varying forces and the system
identification algorithms that represent the computational values as a state-space system.

Define an operator  to describe uncertainty in the state matrix of Q(s). This operator

directly affects a nominal  and describes errors and variations in the poles of the state-space represen-

tation of the unsteady aerodynamic forces. Include a weighting function  such that the range

of state matrices to be considered by robust stability analysis is described by all  with .

(63)

Define also an operator  to describe multiplicative uncertainty in a nominal 

matrix of Q(s). A weighting function  is associated with this uncertainty such that the

range of possible  matrices is described by all  with .

(64)

The choice of additive and multiplicative operators is made for reasons similar to those presented in
section 5.1. One of each type of uncertainty is included to demonstrate the derivation procedures of how
each uncertainty is associated with the nominal aeroelastic dynamics in a feedback relationship. The
actual choice of which type of uncertainty is most suitable to describe errors in  and  is
problem-dependent.

Also, defining the uncertainty operators as real and weightings that are real and constant is not a
requirement. This section presents the problem formulation with these definitions because associating
these types of uncertainties and weightings with the constant real  and  matrices makes intuitive
sense. Certainly 

 

µ

 

 can also compute robust flutter margins with respect to complex frequency-varying
weighted uncertainties.

The nominal aeroelastic model in section 4.2 defined the vector x as the states associated with the
state-space model Q(s). The matrices  and  directly affect the aeroelastic dynamics only through
the state derivative equation for x and do not appear in the other state derivative equations. The aeroelas-
tic plant can be formulated in the 

 

µ

 

 framework by substituting the uncertain values of  and  into
this state derivative equation without considering changes in the derivative equations for the remaining
states 

 

η

 

 and .

(65)
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Several signals are introduced to this equation, where  and  are associated with the uncer-

tainty in    and , and  is associated with the uncertainty in . The signals  and  are

output from the plant matrix as linear combinations of the states.

(66)

The feedback mechanism to describe the modeling uncertainty uses a relationship between these
output signals and the  and  input signals.

(67)

The state-space plant matrix can be formulated using these additional input and output signals.

(68)

Figure 5.2 shows how the uncertainty operators and perturbation to dynamic pressure affect this plant
formulation in a feedback manner.

Figure 5.2. Linear fractional transformation system for robust stability analysis in the 

 

µ

 

 framework with
parameterization around perturbation in dynamic pressure and uncertainty in  and  matrices of the
state-space Q(s) model.
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Associating a  uncertainty operator with the  matrix may not seem immediately useful
because considering errors in the poles determined by the  matrix is often intuited. This  uncer-
tainty can be essential to accurately describe the modeling errors because errors in terms common to both

 and  may exist. Such a situation arises for certain modeling representations of aerodynamic lags.
Consider a simplified Roger’s form Q(s) matrix that uses two Padé approximations to represent lag terms.

(69)

The poles of this system are determined entirely by the  matrix, so uncertainty in the poles can

be 

 

 

 

entirely described by a  operator associated with the  matrix. A similar uncertainty 

should also be associated with the  matrix in this case because the  and  terms appear in both 

and . Allowing variation in  but not in  will introduce unwanted zeros to the system, so the

proper way to model pole uncertainty for this formulation is to include both  and  operators.

The Padé approximation appears often in aeroelastic models, so demonstrating the LFT formulation
of Q(s), which includes the uncertainties in poles  and  in a feedback relationship, may be useful.
The uncertainties in Q(s) can be developed distinctly from the structural uncertainties because LFT oper-
ations allow the structural and aerodynamic models to be combined into a single plant model with a struc-
tured uncertainty description.

 

10

 

Define real scalar operators  and  to describe uncertainty associated with nominal values of

the poles  and . Real scalar weightings  and  normalize the uncertainty such that the

range of poles to be considered by robust stability analysis is described by all  with  and

all  with .

(70)

Define states  and  of Q(s), and consider an input signal  that generates the output signal 
by the relationship . Substitute the uncertain  into the state equation of .

(71)
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Perform a similar derivation for the state equation of .

(72)

The signals  and  are introduced as plant output and input signals to related the uncertainty

 in a feedback manner. The signals  and  are similarly introduced to relate the uncertainty

 in a feedback manner. The state-space matrix can be formulated to describe the nominal 

with these additional input and output signals.

(73)

Figure 5.3 shows the block diagram for Q(s) and the uncertainties.

Figure 5.3. Linear fractional transformation system describing Padé approximation to represent unsteady
aerodynamic force matrix in the 

 

µ

 

 framework with uncertainty in lag terms.
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uncertainties than with parametric uncertainties. These dynamic uncertainties are typically complex in
order to represent errors in both magnitude and phase of signals.

Consider a system P having two modes with natural frequencies at 4 rad/sec and 30 rad/sec.

(74)

Define a nominal model , which will be used for stability analysis of the system but does not
model the high-frequency mode of P.

(75)

The large difference in natural frequency between the high- and low-frequency modes of P precludes
parametric uncertainty associated with the low-frequency mode of  from being a reasonable
description of the modeling errors in . The magnitude of any parametric uncertainty associated with
the low-frequency mode would need to be extremely large to account for the unmodeled high-frequency
dynamics, so the stability analysis would be relatively meaningless because the large uncertainty would
imply the plant is not accurate at any frequencies.

A multiplicative uncertainty operator, , can be used to describe the high-frequency modeling
error without introducing the excessive conservatism resulting from a parametric uncertainty description.
Associate a complex, scalar, weighting function  with this uncertainty to reflect the frequency-
varying levels of modeling errors.

(76)

The set of plants P used for robust stability analysis is formulated to account for the range of dynam-
ics as described by the norm-bounded multiplicative uncertainty ∆.

P = (77)

Figure 5.4 shows the block diagram for robust stability analysis of P.

Figure 5.4. Family of plants P = (I + ∆W) with input multiplicative uncertainty.
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Figure 5.5 shows the magnitude of the transfer function from input to output for P and , and the
maximum magnitude of , which is an upper bound for the output of P at each frequency. The
multiplicative uncertainty is able to bound the modeling error at the high-frequency mode without intro-
ducing excessive conservatism from large uncertainty associated with the low-frequency mode.

Figure 5.5. Transfer functions for example system with multiplicative uncertainty.

Dynamic additive operators may also be required in the uncertainty description to account for errors
that are not efficiently described by either multiplicative and parametric uncertainties. Modeling errors
associated with a zero of the system dynamics are an example of an error that is best described by addi-
tive uncertainty. Multiplicative operators are not useful in this case because  at the
frequency 

 

ω

 

 associated with the zero of nominal model and, correspondingly, every member of the set of
plants  at this frequency. Additive uncertainty allows the system output for some
member of the set of plants to be nonzero even at frequencies of the zeros of the nominal plant.

Consider a plant P with several poles and zeros.

(78)

Assume the nominal plant  of this plant is similar to P and has the correct number of poles and
zeros, but the coefficients of the system equations are incorrect.

(79)
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Define an additive uncertainty operator  that is normalized by a complex, scalar function W

 

 

 

to
reflect the frequency-varying levels of the modeling errors.

(80)

The set of plants 

 

P

 

 used for robust stability analysis is formulated to account for the range of dynam-
ics as described by the norm-bounded additive uncertainty 

 

∆

 

.

 

P

 

 = (81)

Figure 5.6 shows the block diagram for robust stability analysis of 

 

P

 

.

Figure 5.6. Family of plants 

 

P

 

 =  + W 

 

∆

 

 with additive uncertainty.

Figure 5.7 shows the magnitude of the transfer function from input to output for P and , and the
maximum magnitude of  at each frequency. The additive uncertainty bounds the modeling
error at each frequency, including the frequencies near the zero of the nominal plant, because the output
of P is bounded above by the maximum magnitude of the members of the set 

 

P

 

.

Figure 5.7. Transfer functions for example system with additive uncertainty.
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These multiplicative and additive uncertainties are particularly important when comparing an analyti-
cal transfer function with experimental transfer functions derived from flight data. Analytical models are
often computed for a low range of frequencies because the high frequencies add complexity to the model
but do not always affect the stability margins of the aircraft. The experimental data may indicate a high-
frequency mode that is not included in the analytical model, so a frequency-weighted dynamic multipli-
cative uncertainty can be associated with the model.

The issue of mode shape uncertainty is often encountered when comparing low-frequency-predicted
dynamical responses with flight data because sensor measurements are directly affected by the mode
shapes. Both multiplicative and additive uncertainties may be required to accurately model mode shape
errors and account for inaccurate response levels (which may be higher than predicted at some frequen-
cies but lower than predicted at others) and inaccurate frequencies associated with poles and zeros.

 

5.4  Uncertainty Associated with Nonlinearities

 

The 

 

µ 

 

framework described uses linear operators to represent dynamical models and associated
uncertainties but does not admit nonlinear operators. The 

 

µ

 

 framework is useful for analyzing aircraft
stability despite the constraints of linearity because physical systems, which are always nonlinear, can
often be approximated by linear models to a high degree of accuracy. A classic example of this situation
notes the linearized dynamics are often an acceptable representation of an aircraft operating near trim
flight conditions, so linear models work well in practice for control synthesis and stability analysis.
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Nonlinear dynamics cannot always be accurately described by a linearized dynamics model, so the
stability analysis should consider the effects of these nonlinearities.

 

40

 

 The 

 

µ

 

 framework can associate
linear uncertainty operators with linear models to describe the errors resulting from some types of
unmodeled nonlinear dynamics. The uncertainty does not actually represent the nonlinearity; rather, the
uncertainty allows the linear system responses to vary with sufficient magnitude to bound a range of non-
linear system responses.

Separating the nonlinear dynamics that cannot be linearized from the nonlinear dynamics that can be
accurately represented by linear models is useful. Separate uncertainty descriptions can be formulated for
each dynamical block, and the resulting operators can be combined using the LFT framework to formu-
late a single, linear, plant model with a structured uncertainty description. Figure 5.8 shows an example
LFT system representation for a nominal plant  and associated uncertainty 

 

∆,

 

 and a nominal linear
model  and associated uncertainty  representing a system element with nonlinear dynamics.

Figure 5.8. Linear fractional transformation system with nominal models and associated uncertainty
operators.
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The system shown in figure 5.8 is commonly used to describe the coupling between the aeroelastic
dynamics and actuators affecting an aircraft through control surfaces. Actuators can display many types
of nonlinear behaviors and should be considered in the aeroelastic stability analysis, because pilot and
autopilot commands that maintain trim during flight ensure the control surfaces are continuously
moving.
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 The errors in linear models resulting from unmodeled actuator dynamics such as nonlinear
stiffness parameters or hysteresis functions can sometimes be described by a linear uncertainty operator.

Consider the response y of a nonlinear system N that models a system that has a nonlinear stiffness
corresponding to a hardening spring that is valid for the bounded input signal u  ∈  [–10, 10]. Such a
system can represent an element of an actuator model or a nonlinear structural model.

(82)

Define a linear nominal model  such that  approximates the response of N.

(83)

Associate an additive weighting operator  with  such that stability analysis considers the set of
plants 

 

N

 

 

 

.

 

N

    

    

 

 = (84)

Figure 5.9 shows that the maximum and minimum magnitudes of the responses of the set  

 

N

    

    

 

are able
to bound the response of the nonlinear system N for the range u 

 

∈

 

 [–10, 10]. These bounds are overly
conservative throughout this operating range, but they achieve the desired goal of describing errors in the
linear system response resulting from the unmodeled nonlinearity.

Figure 5.9. System responses for hardening spring example.
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A similar procedure can be used to describe error caused by an unmodeled nonlinear softening spring.
Consider the response y of a system represented by N that is valid for an input signal u 

 

∈ 

 

[–10, 10].

(85)

Define a linear nominal model  such that y =  approximates the response of N.

(86)

Associate an additive weighting operator  with  such that stability analysis considers the set of
plants 

 

N

 

.

 

N

    

    

 

= (87)

Figure 5.10 shows that the maximum and minimum magnitudes of the responses of the set 

 

N

 

 are able
to bound the response of the nonlinear system N for the range u 

 

∈

 

 [–10, 10]. These bounds are also overly
conservative throughout this operating range, but they achieve the desired goal of describing errors in the
linear system response resulting from the unmodeled nonlinearity.

Figure 5.10. System responses for softening spring example.

Another nonlinearity that commonly affects aeroelastic systems is hysteresis. The response of a
hysteretic system depends on the trend of the input signal such that an increasing input signal generates a
certain response, but a decreasing input signal generates a different response. Such hysteresis dynamics
are difficult to express as a simple mathematical formula, so for illustrative purposes, assume N is a
nonlinear hysteresis function whose response y depends on the trend of the input signal. Define a linear
nominal model  whose response y =  approximates the response of the hysteretic N.
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(88)

Associate an additive weighting operator  with  such that stability analysis considers the set of
plants 

 

N

 

.

 

N

 

 = (89)

Figure 5.11 shows that the maximum and minimum magnitudes of the responses of the set 

 

N

    

    

 

are able
to bound the response of the nonlinear system N with the hysteresis for the range u 

 

∈

 

 [–10, 10]. Again,
the bounds resulting from a linear uncertainty description are overly conservative throughout this
operating range, but they achieve the desired goal of describing errors caused by the unmodeled
hysteresis nonlinearity.

Figure 5.11. System responses for hysteresis example.

Explicitly constraining the operating region of the input signal u 
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 [–10, 10] can be important to
developing reasonable uncertainties to describe errors resulting from unmodeled nonlinearities. The
errors in the linear model can grow excessively large when considering a large range of inputs, so the
uncertainty magnitude would need to also grow excessively large. The conservatism resulting from such
a large uncertainty description may be unacceptable and require the input range to be constrained to more
reasonable limits.

The uncertainty description, even for a constrained operating region, will usually be overly conserva-
tive when describing modeling errors for certain parts of the operating region. The uncertainty is able to
bound the errors in figures 5.9, 5.10, and 5.11, but the maximum and minimum bound are clearly not
optimal. Some amount of conservatism is expected when describing errors resulting from unmodeled
nonlinearities because a linear model, whether a single plant or a set of plants, will usually not be an
accurate representation of a nonlinear system that cannot be linearized.
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Also, several types of unmodeled nonlinearities exist that are frequently encountered in aircraft
systems but are not easily described by linear uncertainty operators associated with the linear models.
Examples of these types of nonlinearities include free play, dead-band responses, friction, and rate limit-
ing of actuators.

The robust stability margins computed from 
 

µ
 

 with respect to the linear uncertainty operators describ-
ing unmodeled nonlinear dynamics will always be somewhat suspect, because this approach cannot
consider stability properties unique to nonlinear systems such as bifurcation points and limit-cycle behav-
iors.

 

42, 43

 

 This approach limits the usefulness of the 

 

µ

 

 method to systems for which the nonlinearities have
small effects on the response and do not introduce nonlinear instabilities to the critical flutter mechanism.

 

5.5  Uncertainty Associated With Flight Data

 

A theoretical model with an associated uncertainty description can be an accurate representation of
the aeroelastic dynamics of an aircraft, but responses from that model may not identically match flight
data. Additional uncertainties can be associated with the model to describe errors that are observed
between the predicted responses and the measured responses from a commanded excitation to the air-
craft. These uncertainties do not necessarily indicate errors in the model; rather, these uncertainties indi-
cate errors in the process used to generate aeroelastic responses and measure flight data. 

One source of error is an incorrect assumption of excitation force used to generate the predicted and
measured responses. The measured excitation force associated with the flight data may not correctly
account for poor hardware performance and nonuniform spectral distribution of the force. Also, inexactly
phased excitation between multiple force mechanisms can excite modes that are not anticipated by a
theoretical analysis. A frequency-varying dynamic uncertainty can be associated with the force input of
the analytical model to describe errors in the excitation.

The phenomenon of nonrepeatibility can cause discrepancies between predicted and measured
responses from multiple occurrences of excitation signals. Nonrepeatibility affects flight data by intro-
ducing slight variations in responses, even for data recorded at identical flight conditions with identical
excitation signals. This unexplained behavior may result from some unmodeled nonlinear dynamic or
inexact excitation that is not correctly measured. External disturbances such as wind gusts or turbulence
can introduce an unmodeled dynamic that inconsistently affects the aircraft responses. A frequency-
varying dynamic uncertainty can be associated with the model to describe nonrepeatible data variations.

Another source of error between predicted and measured responses is an incorrect assumption of
flight condition. Flight data sets are sometimes generated at test points that attempt to maintain a constant
flight condition to match the data sets predicted from a model describing the aeroelastic dynamics at that
same flight condition. Slight variations in flight conditions while the experimental response is measured
may cause some discrepancy between the predicted response and the flight data. Parametric uncertainty
associated with the unsteady aerodynamic model can be used to account for these errors because flight
condition variations only affect the aerodynamic model and not the structural model.

The model may accurately represent the mode shapes of the aircraft but have a poor representation of
the sensor locations. The responses measured by sensors are inherently dependent on sensor location,
with respect to mode shapes, to determine the magnitude and phase of the signal. Additional errors in
magnitude and phase are introduced when considering transfer-function estimates generated by signals
that violate assumptions used in computational algorithms. A frequency-varying dynamic uncertainty can
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be associated with the output of the plant model to describe errors in both mode shape and sensor
location predictions.

The choice of signal-processing algorithms can also introduce errors between predicted and measured
responses. The Fourier transform, which is the traditional tool for signal processing, assumes several
characteristics of the data that may be violated with transient-response aeroelastic data.

 

44

 
 Filtering and

wavelet-based algorithms may be used to reduce errors introduced by signal processing and reduce con-
servatism in the resulting stability margins.

 
45, 46

 
 Parameter uncertainty associated with the modal param-

eters of the linear model may be used to describe some errors in the natural frequencies and dampings
observed using flight data analyzed by incorrect algorithms. Dynamic uncertainty may also be required to
describe errors introduced by leakage and aliasing effects.
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CHAPTER 6
MODEL VALIDATION OF UNCERTAINTY

6.1   Model Validation Using the Structured Singular Value

 Robust stability analysis considers the stability of a system subject to a set of modeling errors and
perturbations represented by a norm-bounded 

    
ÆÆÆÆ

 

. A logical question that arises is how to reasonably deter-
mine this set. This issue is important for computing robust flutter margins because 

 

µ

 

 can be overly con-
servative if the uncertainty is excessive beyond the true modeling errors and can be overly optimistic if
the uncertainty does not sufficiently account for the true modeling errors.

Model validation algorithms can be used to indicate if an uncertainty description is reasonable with
respect to flight data.

 

47

 

 These algorithms consider whether or not a set of data measurements could have
been generated by a proposed model that includes the nominal dynamics and associated uncertainty oper-
ators and noise and disturbance signals.

Uncertainty operators associated with the nominal plant model specifically in the LFT framework can
be considered by validation algorithms.

 

48

 

 Frequency-domain algorithms are generated that consider the
model validation problem in the context of control design.

 

49

 

 Time-domain approaches are also developed
that can be solved with convex optimization algorithms for certain uncertainty structures.
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A model validation procedure has been formulated that uses a 

 

µ

 

 condition to determine if an uncer-
tainty model is invalidated.
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 This procedure uses frequency-domain transfer-function data to determine
if some perturbation  to the nominal plant could produce the measurements. Consider the block
diagram for robust stability analysis of systems with measurement y and forcing u signals shown in
figure 6.1. The model validation question, as applied to uncertainty models, is given in question 6.1.1.

Figure 6.1. Linear fractional transformation system for robust stability analysis and model validation with
forcing and measurement signals.
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(90)

Robust stability analysis of this system is determined using the transfer function , which contains
the feedback relationship between the plant dynamics and the uncertainty operator. The robust stability
condition given by theorem 3.3.3 requires µ( ) < 1.

The model validation condition uses these elements of P and the finite-energy frequency-domain
signals y, u ∈  where the measurements are scalar functions y, u ∈ C. Formulate the following
two matrices.

(91)

The following theorem formulates the model validation test using µ.51

Theorem 6.1.2:  Given measurements y generated by inputs u, then the system P with associated
uncertainty set ÆÆÆÆ is not invalidated if

(92)

This condition may seem counterintuitive in that the desired condition for validation is µ greater than
one, while the robust stability condition seeks a value less than one. This condition can be explained by
considering the following relationship of y = u as shown in figure 6.1.

(93)

Define the plant . A value of µ( ) < 1 implies this system is robustly stable
to all perturbations . This robust stability of µ( ) < 1 also implies that the loop gain  is
not singular for any value . Thus, µ( ) < 1 would contradict the relationship shown in the above
equations that requires  to be singular to satisfy the input-to-output relationship of the data. In
this respect, the model validation test is actually an inverted robust stability test.

The phrase “model validation” may be misleading. No analytical model can ever be truly validated by
considering a finite set of experimental data. A model may not be invalidated by the data, but no guaran-
tee exists that a different data set could not be generated from the physical system that invalidates the
model. The finite sets of measurement data cannot record the response of the system to an infinite num-
ber of input signals subject to an infinite number of initial conditions. Theorem 6.1.2 reflects this fact by
explicitly stating the condition only determines if the model is invalidated by the data. The system is
assumed to be nearly linear, and the data is assumed to sufficiently represent the behavior of the dynam-
ics, so theorem 6.1.2 represents a model validation test.
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6.2  Validating Norm Bounds for Uncertainty

The value of µ computed using theorem 6.1.2 can be interpreted as a measure of how reasonable the
uncertainty description is. A value of µ = 2 implies the uncertainty can be scaled by 2 before the model is
invalidated. Alternatively, a value of µ = 0.5 implies twice as much uncertainty is required for the model
to not be invalidated. This interpretation of µ, as relating to the size of allowable perturbations, empha-
sizes the relationship of the model validation condition to a robust stability condition.

This model validation is used in practice to generate reasonable norm bounds for an uncertainty
description. The following algorithm can be used to determine a sufficient level of uncertainty required
such that the model is not invalidated by multiple data sets. A small scalar α > 1 is chosen to scale the
uncertainty set and increase the amount of allowable errors if the size of ÆÆÆÆ is not sufficient.

Algorithm 6.2.1 (Model Validation):

Given frequency-domain data sets  and :

Given frequency-domain transfer-function P with elements :

Given uncertainty set ÆÆÆÆ with initial norm bound:
Given update scalar α > 1:

valid = FALSE
while (valid == FALSE) {

valid = TRUE
for i = 1 : n {

if   µ  {

valid = FALSE
}

}
 (equivalent to ÆÆÆÆ = αÆÆÆÆ)

}
ÆÆÆÆ is the required norm-bounded uncertainty

The norm bound on the uncertainty set ÆÆÆÆ is not actually increased with this method as denoted by the
parentheses around the statement ÆÆÆÆ = αÆÆÆÆ. Scaling the uncertainty and retaining these scalings throughout
the procedure would be difficult. The algorithm is simplified by always considering the uncertainty is
scaled such that µ < 1 is always the desired result. This scaling of the uncertainty is actually accom-
plished by the statement , which scales the feedback signals between the plant and uncer-
tainty operators. The norm bound for the uncertainty that is needed to ensure the uncertainty levels are
not invalidated by the data is scaled into the plant by the parameter α. Robust flutter margins can be com-
puted directly from the new scaled plant using algorithm 4.4.6 with a desired µ < 1 condition.
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Algorithm 6.2.1 is a straightforward implementation of the model validation test. The µ values are
only compared with 1 to determine if the model is invalidated. More sophisticated algorithms could use
the value of µ to determine the factor α to scale the uncertainty. Also, the values of µ across frequency
could be exploited. Frequencies with low µ value indicate areas where the uncertainty set is least conser-
vative; frequencies with high µ are overly conservative. The scaling α could vary with frequency to
reflect this information.

The situation may arise when the initial value chosen for the norm bound of the uncertainty set may
be overly conservative. In this situation, the model validation condition will pass for each data set during
the first processing of the outer loop. The initial norm bound can simply be decreased by some level con-
sistent with the lowest µ value computed during the validation checks, and algorithm 6.2.1 can be run
again to compute a less conservative uncertainty description that does not invalidate the model.

Theorem 6.1.2 is only valid for scalar data signals generated by systems with a single input and single
output. Multiple data signals can be considered by applying theorem 6.1.2 to each combination of single-
input and -output signals. Algorithm 6.2.1 can still be used by simply including outer loops to cycle over
the number of input and measurement signals.

The model validation algorithm using theorem 6.1.2 is a departure from traditional methods of
analyzing flight data to assess accuracy of an analytical model. The most widely used algorithms for
analyzing flight data estimate natural frequencies and modal damping. The model validation procedure
using µ considers the response dynamics at each frequency without explicitly comparing modal proper-
ties. This procedure enhances the ability of the µ method to analyze flutter stability without requiring
damping estimates.

Another interpretation of algorithm 6.2.1 uses the uncertainty ÆÆÆÆ to bound the magnitude and phase of
the possible transfer functions generated by the family of plants (P, ÆÆÆÆ). The structured singular value
ensures the experimental data transfer function lies within these analytical bounds at every frequency.

Fu
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CHAPTER 7
PROCEDURE FOR THE µ METHOD

7.1  Model Updating

Generating a model by analyzing flight data is essential for computing a confident stability analysis.
A nominal model generated purely from analytical equations of the predicted aircraft dynamics may not
accurately describe the true aircraft. A model must be generated that accounts for the flight data to ensure
the predicted dynamics represent the true dynamics.

The most direct method of generating a model from the flight data is to identify a system model
entirely from the data measurements. Many system identification algorithms exist that have become
standard tools for systems and control engineers.52 Direct application of these methods to aeroelastic sys-
tems rarely produces an accurate model that accounts for the dynamics of the aircraft.2 Aeroelastic
response data is typically of poor quality relative to ground vibration test data because of the low signal-
to-noise ratio and unobserved dynamics in the response measurements that may drastically lower the
effectiveness of system identification algorithms.2

An alternative method is to use the nominal aircraft dynamical model as an initial estimate to model
the true aircraft. The flight data are then used to update the elements of this model. Several methods have
been devised to update an analytical structural model using experimental data.53 Model updating can be
performed on the full stress model or a subset computed with Guyan reduction.54 Generally, considering
the full model is preferable because the reduction may distribute local errors throughout the entire model
if an orthogonality condition is violated.55

Two basic methods are proposed to update the full structural model using comparisons between
experimental and predicted data. One method updates the mass and stiffness matrices of the finite-
element model.56 This method suffers from lack of physical interpretation of the matrix updates and
possible numerical conditioning. Another method updates specific parameters in the model. This method
is accurate for small systems but may require an excessive computational cost for large systems.

Aeroelastic models have the additional freedom of updating the aerodynamic and the structural
elements. A method of updating the linear model in a modern control framework has been developed.32

This method may be overly conservative for describing nonlinearities, and the corresponding stability
margins are only accurate for flight conditions near the instability. A parametric identification algorithm
has been developed that uses flight data to update specific terms in the aerodynamic model through a
nonlinear optimization.57 This method suffers with flight data because of unobserved dynamics and the
low signal-to-noise ratio in the measurements.

The approach taken in this paper is to update only the uncertainty operators of the robust aeroelastic
model, using the flight data, and leave the nominal dynamics model unchanged. The model validation
condition of theorem 6.1.2 is used with the nominal plant P to generate a reasonable uncertainty descrip-
tion ∆ to associate with P. Figure 7.1 shows the flow of information through the µ method.

Algorithm 6.2.1 presents a procedure to implement the µ method in a manner corresponding to
figure 7.1. The model update procedure based on algorithm 6.2.1 actually scales the plant but has the
equivalent effect of scaling the norm bound of the uncertainty description. The algorithm loops over the
model validation procedure until an uncertainty description is determined that is not invalidated by the
flight data. The final step is to compute a robust flutter margin from the scaled plant by using a µ < 1 con-
dition as in algorithm 4.4.6.
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Algorithm 7.1.1 (robust flutter margins with model updating):

Given nominal plant P: 
Given uncertainty set ÆÆÆÆ associated with P:
Given input excitation data u:
Given output response measurement data y:
Define  as the scaling update for ∆

while ( (P, ∆) is invalidated by u, y using algorithm 6.2.1) {

ÆÆÆÆ = WÆÆÆÆ
}

 is flutter margin computed from algorithm 4.4.6

Several advantages exist to using this method as compared to traditional model updating methods.
The typically poor quality of flight data, in association with aircraft dynamics consisting of many modes,
makes updating a nominal model difficult. Traditional methods of norm-based update algorithms often
generate a nonunique set of model updates that have no way to determine which update has the most
logical physical interpretation. The method of updating the uncertainty operators based on a worst-case
magnitude avoids this problem.

Also, this method can work with flight data of varying quality. The updated uncertainty description is
highly accurate if the data show a high signal-to-noise ratio and much of the dynamics are observed by
the sensors. If the data do not have these desired characteristics, however, the method can still compute a
flutter margin. An uncertainty description may be difficult to compute if the data do not indicate the
aircraft dynamics well, so the model validation procedure will not require a large magnitude for the
uncertainty operators. The robust model in this situation will closely resemble the nominal model. In this
way, the µ method will always generate a more accurate flutter margin, and at worst, the robust µ   flutter
margin will be equivalent to the nominal flutter margin.

∆P

µ
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Finite element
and aerodynamics

Robust margin

Model validation
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Figure 7.1. Information flowchart to generate plant and uncertainty operators from a system model and
flight data with the µ method.
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7.2  Approaches to Use Flight Data

A flight test generally consists of maneuvers at several test points that may be at identical or different
flight conditions. The entire flight test program will use many flight tests to measure response data at test
points throughout the flight envelope. The model-updating method that generates uncertainty operators
can use the entire set of flight data from the different test points.

Several approaches are formulated to use multiple flight data sets to update the uncertainty descrip-
tion associated with a nominal plant model. The uncertainty description may be different for each
approach, and the resulting flutter margin will be different for each approach because of the dependence
of µ on the uncertainty set. Two approaches discussed here are denoted as local and global.

A local approach uses flight data from test points at identical flight conditions. These data are used to
generate an uncertainty description for the nominal model at the particular flight condition associated
with the data. The magnitude of the uncertainty operators is chosen such that a robust model at the single
flight condition is not invalidated by any of the flight data sets measured at that same flight condition
with no consideration of data from other flight conditions.

The local approach shows the benefit of independently computing uncertainty descriptions for mod-
els at different flight conditions. This approach allows each uncertainty description to be more accurate
because, for example, the flight data may indicate much smaller uncertainty operators are required for
subsonic plant models even though large uncertainty operators are required for transonic plant models.
The resulting worst-case flutter margins will be less conservative because less uncertainty is required for
the model.

Algorithm 7.2.1 outlines the local approach to use flight data and compute flutter margins.

Algorithm 7.2.1  (local approach): 

Define scalar  as the number of flight conditions.

Define scalar  as the number of data sets at flight condition i.

Define vectors as input excitations at flight condition i.

Define vectors  as response measurements at flight condition i.

Define matrices  as plant models at flight condition i. 

for  {

Choose initial 
for   j = 1 :  {

validate  using  and 

increase size of  if necessary to validate
}

compute flutter margin  from µ
}
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A global approach uses the entire set of flight data from test points throughout the flight envelope to
generate a single uncertainty description for all nominal aircraft models. The magnitudes of the uncer-
tainty operators are chosen such that all nominal models with the associated uncertainty description are
not invalidated by any of the flight data sets.

Several advantages and disadvantages exist to using the global approach instead of the local
approach. One disadvantage is a possible large increase in conservatism of the flutter margin because the
uncertainty description is not minimized at each flight condition. A single particularly inaccurate plant
model will require large uncertainty operators that may be highly conservative for plant models at flight
conditions that are better representations of the true dynamics. 

One advantage to this approach, however, is that the uncertainty description is truly worst-case with
respect to the entire flight envelope. The worst-case errors from the worst-case flight condition are used
to generate the uncertainty description for all conditions. Also, this approach is not very sensitive to
poorly measured flight data. A poorly modeled modal response may only appear in certain data sets. The
local approach would not include uncertainty for these dynamics at conditions that did not clearly
observe this modal response, so the resulting flutter margin would not account for the true level of mod-
eling errors. The flutter margin generated with the global approach may be more conservative than the
local approach, but this approach introduces a corresponding higher margin of safety.

Algorithm 7.2.2 outlines the global approach to use flight data and compute flutter margins.

 

Algorithm 7.2.2 (global approach):

 

Define scalar  as the number of flight conditions.

Define scalar  as the number of data sets at flight condition 
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Hybrid approaches have also been formulated that mix the local and global approaches. One straight-
forward hybrid approach is to generate an uncertainty description using all data from a small range of
flight conditions. This approach can be useful for separately considering sets of plant models that are
generated using different techniques. For example, the model-generating package used for this paper
computes all subsonic plant models with a doublet-lattice algorithm and the supersonic models are gener-
ated with constant-panel algorithms. A hybrid approach could be used to reflect this knowledge and
consider groups of subsonic, supersonic, and transonic plants independently.

The approaches outlined here are certainly not exhaustive. A weighted-norm approach can be formu-
lated that uses flight data from the entire flight envelope but depends heavily on a particular subset of that
data. Other approaches could concentrate on particular dynamics through modal filtering techniques to
generate separate uncertainty descriptions for individual modes.
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CHAPTER 8
ROBUST FLUTTER MARGINS OF THE F/A-18 SYSTEMS RESEARCH AIRCRAFT

8.1  Aircraft Flight Test

 

Robust flutter margins are computed for the F/A-18 Systems Research Aircraft (SRA) that is flown at
NASA Dryden Flight Research Center as Ship 845.
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 The SRA is a standard two-seat F/A-18 with
production engines. This aircraft is being used as a test bed for flutter testing, advanced actuator concepts,
smart structures, optical sensors, and avionics systems.

 

59

 

 Figure 8.1 shows the SRA in flight over the
Mojave desert near Edwards, California.

Figure 8.1 F/A-18 systems research aircraft.

Flutter testing was initiated on the SRA because of a major left-wing structural modification that
allows testing of several hydraulic and electromechanical aileron actuator concepts. The increased size
and weight of these actuators required large and heavy items to be installed, replacing a fitting called a
hinge-half that supports the aileron hinge, actuator, and a fairing. These structural modifications changed
stiffness and damping properties and added approximately 20 lbm to the wing. Dependency of the aileron
aeroelastic behavior on actuator dynamics warranted the flutter tests.

The results presented in this paper are associated with the F/A-18 SRA with the left-wing structural
modification. More than 30 flight tests were conducted in two sessions, one session between September
1994 and February 1995 and one session between June 1995 and July 1995. A total of 260 data sets are
measured from test points at various conditions throughout the flight envelope. 

The flight flutter test program used a wingtip excitation system developed by Dynamic Engineering
Incorporated (DEI). This exciter is a modification of an excitation system used for F-16 XL flutter
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research.
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 The system consists of a wingtip exciter, an avionics box mounted in the instrumentation bay,
and a cockpit controller.

Aerodynamic forces are generated by the wingtip exciter. This exciter consists of a small, fixed, aero-
dynamic vane forward of a rotating, slotted, hollow cylinder. Rotating the cylinder varies the pressure
distribution on the vane and results in a wingtip force changing at two times the cylinder rotation fre-
quency. The magnitude of the resulting force is determined by the amount of opening in the slot.
Figure 8.2 shows the F/A-18 aircraft with a left-side wingtip exciter in the aft position.

Figure 8.2 Left wing of the F/A-18 systems research aircraft with wingtip excitation system.

The cockpit controller commands a frequency range, duration, and magnitude for the wingtip excita-
tion signal. Frequency-varying excitation is generated by changing the cylinder rotation frequency with
sine sweeps. Each wingtip exciter is commanded to act in phase (0

 

°

 

) or out of phase (180

 

°

 

) with each
other. Ideally, the in-phase data excite the symmetric modes of the aircraft, and the out-of-phase data
excite the antisymmetric modes. In reality, nonideal phasing of the exciters often caused a mixture of
symmetric and antisymmetric modes to be excited.

Flight data sets were recorded by activating the exciter system at a given flight condition. The aircraft
attempted to remain at the flight condition throughout the series of sine sweeps desired by the controller.
The sine sweeps were restricted to within 3 Hz and 35 Hz, and smaller ranges were sometimes used to
concentrate on a specific set of modal responses. Multiple sets of either linear or logarithmic sweeps were
used with the sweep frequency increasing or decreasing. Table 8.1 shows the flight test matrix of excita-
tion parameters and flight conditions for the F/A-18 SRA flutter program.

Accelerometers are available at several points on the aircraft to record modal responses. Each wing
has a sensor on the aileron and at the forward and aft position on the wingtip. Additional accelerometers
are located on each vertical tail and horizontal stabilator.
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8.2 Aeroelastic Data Analysis

 

Aeroelastic flight data generated with the exciter system are analyzed by generating transfer functions
from the excitation force to the sensor measurements. These transfer functions are generated using stan-
dard Fourier transform algorithms. Several inherent assumptions associated with Fourier analysis exist
that are violated with the flight data. The assumptions of time-invariant stationary data composed of sums
of infinite sinusoids are not met by this transient-response data.
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 The amount of uncertainty required
to validate the model can be reduced by using wavelets to accurately process the data but are not consid-
ered in this paper.

Figure 8.3 shows an example of dynamical variations that are observed during flight testing. Two
transfer functions generated from different data sets clearly show some variation. The natural frequency

Table 8.1. Operating and flight conditions for the F/A-18 SRA flight flutter test.

Mach 0.54, 0.65, 0.70, 0.80, 0.85, 0.90, 0.95, 1.05, 1.2, 1.4, 1.6

Altitude, ft 10K, 30K, and 40K

Exciter configuration Symmetric, antisymmetric, and independent

Exciter position Both forward, both aft, and left aft/right forward

Exciter force level Low and high 

Sweep type Linear and logarithmic

Sweep duration, sec 15, 30, and 60

Sweep range, Hz 3–35, 3–12, 3–25, 25–35, 35–3, 3–40

Sweep multiples 1, 2, and 4 sweeps for each maneuver
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Figure 8.3. Flight data transfer functions from symmetric excitation to left wing forward acceler-
ometer for Mach = 0.8 and 30,000 ft demonstrating variation in modal frequency and damping.
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and modal response are different as observed by these two data sets, although each test point used the
same sweep procedure at identical flight conditions of Mach 0.8 and an altitude of 30,000 ft. One
possibility to account for such variations is the change in mass, a maximum of 10 percent, between the
heavyweight and lightweight conditions caused by fuel consumption. Another possibility is the nonideal
phasing between the exciters causing excitation that is not purely symmetric.

The deviations between the modal responses in figure 8.3 are used to generate uncertainty for the
symmetric wing first-bending mode. Similar deviations observed in modal responses are used to generate
uncertainty for each mode. Uncertainty levels in modes that are not observed are assumed to be similar to
those of the observed modes.

Figure 8.3 shows modeling uncertainty caused by variations between the analytical model and the
aircraft dynamics that change during a flight test. Additional uncertainty is introduced because of
improper operation of the exciters. Several behaviors are observed because of these improper operations.

The most noticeable of these improper behaviors occurs as a function of dynamic pressure. The
motors and rotating cylinder assemblies bind at high dynamic pressures, causing erratic phase relation-
ships between the individual exciters on opposite wingtips. Figure 8.4 shows a representative plot of the
phase difference in degrees between the left and right exciters operating in symmetric mode for a sweep
taken at a test point with  = 356 lbf/ft

 

2

 

. This phase plot, which does not maintain the desired 0

 

°

 

 phase
difference but is relatively constant and well-behaved, is in direct contrast to the phase difference at a test
point of  = 825 lbf/ft

 

2

 

 (fig. 8.5).

Figure 8.4. Phase difference in degrees between left and right exciters for sweep range 3–30 Hz at
Mach = 0.90 and 30,000 ft at  = 356 lb/ft
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Figure 8.5. Phase difference in degrees between left and right exciters for sweep range 3–30 Hz at
Mach = 0.90 and 10,000 ft at  = 825 lb/ft2.

Another improper behavior is the nonrepeatibility observed with the data because of variations in
transfer functions using different data sets recorded at identical flight conditions. Figures 8.6 and 8.7
show an example of such a variation observed for frequency-increasing and -decreasing sweeps. The µ
method can use the data despite these nonrepeatabilities that would adversely affect traditional system
identification approaches.

The data analysis process is further degraded by a poor measurement of the excitation force used to
generate the modal responses. The excitation force is not directly measured, but a strain-gage measure-
ment is used to approximate this force. The strain gage records lateral shear strain at the exciter vane root.
This measurement is assumed to be representative of the vertical shear and spanwise-moment load at the
wingtip rib. Time-frequency analysis using wavelets clearly shows this strain-gage signal to have some
harmonic resonances from the structural response.44

The effect of the poor approximation of input force and the erratic behavior of the exciters is to
reduce the quality of the flight data. Methods relying on system identification fail to accurately use the
data to predict a flutter boundary.57 The µ method is able to account for the data anomalies by including
greater levels of uncertainty.
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Figure 8.6. Flight data transfer function from symmetric excitation to left wing forward accelerometer for
Mach = 0.8 and 30,000 ft with frequency increasing sweep from 3–35 Hz.

Figure 8.7. Flight data transfer function from symmetric excitation to left wing forward accelerometer for
Mach = 0.8 and 30,000 ft with frequency decreasing sweep from 35–3 Hz.
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8.3  Analytical Model

A finite-element model of the SRA is used to compute the aeroelastic dynamics and modal
characteristics of the aircraft. The generalized equations of motion are used to derive a linear, finite-
dimensional state-space model of the aircraft. This model contains 14 symmetric structural modes,
14 antisymmetric structural modes, and 6 rigid-body dynamic modes. The control surfaces are not active,
and no control modes are included in the model. Table 8.2 shows natural frequencies of the elastic struc-
tural modes. These modal frequencies are computed for the aircraft with no aerodynamics considered.

The predicted flutter results for this aircraft are computed from the finite-element model using the p-k
method. A detailed explanation of the F/A-18 SRA modeling process and flutter analysis using traditional
methods has previously been published.

The doublet-lattice and constant-panel methods are used to compute the frequency-varying unsteady
aerodynamic forces for several subsonic, transonic, and supersonic Mach numbers. Force matrices for
Mach 0.80, 0.90, 0.95, 1.10, 1.20, 1.40, and 1.60, are available. The unsteady aerodynamic forces are
computed as a function of reduced frequency, k.

Table 8.2. Elastic natural frequencies of the structural finite-element model of the fully
fueled F/A-18 SRA with left-wing modifications and no wingtip excitation system.

Mode  Symmetric, Hz Antisymmetric, Hz 

Wing first bending 5.59 8.84 

Fuselage first bending 9.30 8.15

Stabilator first bending 13.21  12.98

Wing first torsion 13.98 14.85

Vertical tail first bending 16.83 15.61

Wing second bending 16.95 16.79

Wing outboard torsion 17.22 – 

Fuselage second bending 19.81 18.62

Trailing-edge flap rotation 23.70 23.47

Fuselage torsion – 24.19 

Launcher rail lateral – 24.35

Stabilator fore and aft 28.31 28.58

Wing second torsion 29.88 29.93

Aileron rotation 33.44 – 

Aft fuselage torsion – 37.80 

Aileron torsion 38.60 –

Wing pitch – 39.18 

Wing third bending 43.17 –
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(94)

The reduced frequency is a function of the true frequency (ω), the true velocity (V), and the mean aero-
dynamic chord . Aerodynamic forces generated for ten reduced-frequency points between k = 0.0001
and k = 4.0000 are sufficient for flutter margin computation for this aircraft. Figure 8.8 shows the magni-
tude and phase of a sample calculation of the unsteady aerodynamic forces as a function of reduced
frequency. An additional ten points computed between k = 0.01 and k = 1.00 demonstrate the function is
smooth across frequency, so the original set of ten points is sufficient to describe the behavior of unsteady
aerodynamic forces.

Figure 8.8. Magnitude and phase of the frequency-varying unsteady aerodynamic forces.

The unsteady aerodynamic forces are fit to a finite-dimensional state-space system. The system
identification algorithm is a frequency-domain curve-fitting algorithm based on a least-squares minimi-
zation.62 A separate system is identified for each column of the unsteady forces transfer-function matrix.
Fourth-order state-space systems are used for each column of the symmetric forces, and second-order
state-space systems are used for each column of the antisymmetric forces. These systems are combined to
form a single multiple-input and multiple-output state-space model of the unsteady aerodynamics forces,
previously designated Q(s). This model has 56 states for the symmetric modes and 28 states for the anti-
symmetric modes.
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The analytical aeroelastic model has inputs for symmetric and antisymmetric excitation forces. The
excitation force is assumed to be purely symmetric or antisymmetric. Ten outputs exist that correspond to
the sensor locations on the aircraft.

8.4  Uncertainty Description

Noise and uncertainty operators are introduced to the linear aeroelastic model to account for varia-
tions between the analytical model and the actual aircraft. Standard analysis of the linear model is used to
determine the framework for how uncertainty operators enter the system. Two uncertainty operators and
a single noise input are used to describe the modeling uncertainty in the linear aeroelastic model. The
magnitude of each uncertainty operator and the noise level is determined from both reasoning of the mod-
eling process and analysis of the flight data.63

An uncertainty operator, , is associated with the state matrix of the F/A-18 linear model. This
uncertainty models variations in the natural frequency and damping values for each mode.64 State-matrix
uncertainty can account for errors in coefficients of the equations of motion and changes in the aircraft
dynamics caused by parameter variations such as mass consumption during flight.

The  is a structured, diagonal matrix with real, scalar parameters as elements. Separate elements
are used to affect each modal response and time lag in the state matrix. The modal response uncertainty
parameters are each repeated two times, and each time-lag uncertainty appears once on the diagonal.

Each repeated modal uncertainty parameter affects natural frequency and damping by allowing varia-
tion in the state matrix elements. Consider formulating the state matrix as a block diagonal with a 2-by-2
block representing each mode. The real component of a modal eigenvalue, , is the diagonal component
of each block, and the imaginary part, , is arranged on the off-diagonal positions. Define  as the block
determining the natural frequency, , and damping, , of the  mode.

(95)

Scalar weightings,  and , are used to affect the amount of uncertainty in each matrix element.
The amount of variation in the matrix elements and, correspondingly, the amount of variation in the natu-
ral frequency and damping, are determined by the magnitude of these scalar weightings. Define  and

 as elements of the state matrix affected by an uncertainty parameter δ.

(96)

Aeroelastic modes typically show low damping values caused by the real component being smaller
than the imaginary component. Because linear modeling techniques often identify the natural frequency
better than the damping value, the weighting for the real component is expected to be larger than that for
the imaginary component. This weighting is reflected by the observed modal parameters in the flight data.
The natural frequencies show variations of ±5 percent from the theoretical model, but the uncertainty in
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the damping needs variations of approximately 

 

±

 

15 percent to validate all the flight data. The scalar
weightings are chosen accordingly.

(97)

The flight data are only able to determine uncertainty levels for the modal parameters of the experi-
mentally observed modes. The uncertainty levels in the unobserved modes are assumed to be consistent
with these values. Parametric uncertainty is introduced for each modal block in the state matrix, affecting
observed and unobserved modes, using the weighting values given above.

The single scalar blocks of  are normalized to one by weighting their effect on the time lags of the
state matrix. Variations observed in the flight data are used to determine that a weighting of  = 0.15
is required to admit 15-percent variation in the time lags.

The second uncertainty operator, , is a multiplicative uncertainty on the force input to the linear
model. This uncertainty is used to cover nonlinearities and unmodeled dynamics. The linear model
contains no dynamics at greater than 40 Hz, so the high-frequency component of this operator will reflect
this uncertainty. This operator is also used to model the excitation uncertainty caused by the exciter sys-
tem. Analysis of the flight data indicates the input excitation signals rarely had the desired magnitude and
phase characteristics that they were designed to achieve. The low-frequency component of the input
uncertainty reflects the uncertainty associated with the excitation system used to generate the flight data.
The frequency-varying transfer function for weighting the input uncertainty is given as .

(98)

A noise signal is included with the sensor measurements. Knowledge of the aircraft sensors is used to
determine that a level of 10-percent noise is possible in the measured flight data. An additional noise may
be included on the force input caused by the excitation system, but the input multiplicative uncertainty is
sufficient to describe this noise. Figure 8.9 shows the block diagram for the aeroelastic model with the
uncertainty operators. 

Figure 8.9. F/A-18 robust stability block diagram.
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The flight data used to validate this uncertainty structure cover a large range of flight points. The
entire set of 260 flight maneuvers throughout the flight envelope is considered. Using a single uncertainty
description over the entire flight envelope may be conservative. Certainly assuming the linear models are
more accurate at subsonic and supersonic speeds than at transonic speeds because of flow irregularities
caused by shock formation is reasonable. Additionally, the flight data from the exciter system should be
better at subsonic speeds than at supersonic speeds because of the degraded performance at high dynamic
pressures. However, the analysis process is simplified by considering a single set of uncertainty opera-
tors. This process is equivalent to formulating the worst-case uncertainty levels at the worst-case flight
condition and assuming that amount of uncertainty is possible for the remaining flight conditions.

 

8.5  Nominal and Robust Flutter Pressures

 

Flutter pressures are computed for a linear model with the associated modeling uncertainty structure
using the 

 

µ

 

 analysis method.
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 Linear systems for symmetric and antisymmetric structural modes are sep-
arated for ease of analysis. These systems can easily be combined and analyzed as a single system; how-
ever, eigenvector analysis would be required to distinguish which critical flutter modes are symmetric
and which are antisymmetric. Each system contains the same number of structural modes (14), and the
uncertainty descriptions are identical for each linear model.

The system shown in figure 8.9 contains three uncertainty blocks. The parametric uncertainty cover-
ing variations caused by dynamic pressure, , is a scalar parameter repeated 14 times, once for each
elastic mode. The parametric uncertainty block affecting the modal parameters, , is a diagonal matrix
with dimension equal to the number of states. Separate scalars along the diagonal represent uncertainty in
each elastic mode, each mode in the aerodynamic force approximation, and each lag term. The uncer-
tainty parameters for the modes are repeated two times; the parameters for the lag terms are single
scalars. Define  as the  uncertainty parameter for the system using  modes and  lag terms. The
input-multiplicative uncertainty block, , is a scalar for this single-input plant model because symmet-
ric excitation is analyzed separately from antisymmetric excitation.

The parametric uncertainty parameters represent changes in elements of the state-space model. The

variation of  between 

 

±

 

1 admits dynamic pressures between . Allowing the modal uncer-

tainty parameters, , to vary between 

 

±

 

1 allows 5-percent variation in the imaginary part of the

natural frequency and 15-percent variation in the real part. This variation corresponds to approximately

5-percent variation in the natural frequency and 15-percent variation in the damping value of each mode.

These parameters are real quantities. The input-multiplicative uncertainty contains magnitude and phase

information and is treated as a complex linear time-invariant uncertainty.

Nominal flutter pressures are initially computed by ignoring the modal and input uncertainties. The
structured singular value is computed only with respect to the parametric uncertainty, allowing a range of
dynamic pressures to be considered. Robust flutter pressures are computed with respect to the structured
uncertainty set, 

 

∆

 

, described above using the structured singular value. Table 8.3 shows traditional flutter
pressures computed using the p-k method and nominal and robust flutter pressures computed with 

 

µ
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The nominal flutter dynamic pressures computed using the µ method can be directly compared with
those computed using the traditional p-k method. Each of these flutter solutions is based on an analytical
model that has no consideration of modeling uncertainty.

The nominal flutter points for the symmetric modes match closely with the p-k method throughout
the flight envelope. The subsonic and supersonic cases show an especially good correlation with the p-k
flutter points. For each of these flight regions, the µ analysis flutter dynamic pressures are nearly identical
(within 1 percent) to the p-k method flutter dynamic pressures. The transonic case at Mach  1.1, however,
shows a slight difference between the two methods. The µ method computes a flutter point that is greater
than the p-k method. In each Mach regime (subsonic, supersonic, or transonic), the nominal flutter points
are within 5 percent for the two methods.

The antisymmetric modes show a similar relationship between the flutter pressures computed with
the µ and p-k methods. The subsonic and supersonic flutter points are within 5 percent for the two
methods, but a greater deviation exists at the transonic condition. The µ computes a flutter pressure at
Mach 1.1 that is 40 percent lower than the p-k method indicates.

The nominal flutter points for the µ and p-k methods show the greatest difference for both the
symmetric and antisymmetric modes at the transonic case. The aerodynamics at Mach 1.1 are more
difficult to accurately model than at either subsonic or supersonic speeds. Numerical sensitivity to repre-
sentations of the unsteady aerodynamic forces causes differences in the nominal flutter pressure. 

The robust flutter pressures computed using the µ method have lower dynamic pressures than the
nominal pressures, which indicates the expected conservative nature of the robust computation. These
new flutter points are worst-case values for the entire range of allowed uncertainty. The subsonic and
supersonic flutter boundaries are not greatly affected by the uncertainty set. In each of these cases, the
robust flutter point is within 10 percent of the nominal flutter point.

The flutter boundary at the transonic case, Mach 1.1, demonstrates significant sensitivity to the
modeling uncertainty. The robust flutter dynamic pressures are approximately 70 percent of the nominal
flutter pressures. This difference is explained by considering the rapid transition of critical flutter bound-
aries near this region. The critical flutter frequencies and the flutter dynamic pressure widely vary

Table 8.3 Nominal and robust flutter pressures computed with p-k and µ methods.

Symmetric, lbf/ft2 Antisymmetric, lbf/ft2

Mach

0.80 3360 3168 2909 4600 4593 3648

0.90 2700 2706 2575 3150 3057 2944

0.95 2430 2388 2329 2600 2751 2572

1.10 5400 5676 4120 5500 3265 2827

1.20 2469 2454 2327 2850 2893 2653

1.40 3528 3432 3034 4600 4439 4191

1.60 4470 4487 3996 5700 5870 4536

qp-k qnom qrob qp-k qnom qrob
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between Mach numbers slightly lower and higher than transonic. The small amount of modeling uncer-
tainty is enough to cause the worst-case flutter mechanism to shift, and the plant assumes characteristics
more consistent with a nontransonic regime.

Table 8.4 shows the modal natural frequencies for the critical flutter modes. The frequencies
computed using the p-k method and the µ analysis method are close throughout the flight envelope for
both the symmetric and antisymmetric modes. Frequencies for the robust flutter solutions are slightly
different than the nominal flutter frequencies because of the modeling uncertainty that allowed 5-percent
variation in the modal natural frequencies.

Table 8.5 shows subcritical flutter pressures computed with the µ and p-k methods. Only nominal sub-
critical pressures are detected with µ, because the robust pressures are always worst-case critical pressures.

The µ analysis computes subcritical flutter pressures within 10 percent of the p-k method for both the
symmetric and antisymmetric modes. The µ method is even able to detect the subcritical flutter hump
mode occurring for antisymmetric excitation at Mach 0.9.

Table 8.4. Frequencies of unstable modes associated with nominal and robust flutter pressures
computed with p-k and µ methods.

Symmetric, Hz Antisymmetric, Hz

Mach   

 0.80 8.2 7.6 7.7  9.0 9.1  9.1

 0.90 7.4 7.3 7.3  9.2  9.1  9.2

0.95 6.8  6.9 6.9  9.1  9.2 9.2

1.10 12.1 13.2 13.0  28.6 28.0 28.3 

1.20 26.5  27.4 27.4 26.9 28.9 28.9 

1.40 28.1 28.1 28.1 30.4 31.7 31.8 

1.60 28.9  30.1 30.1 32.8 32.3 32.1

Table 8.5. Subcritical nominal flutter pressures computed with p-k and µ methods.

Symmetric, lbf/ft2 Antisymmetric, lbf/ft2

Mach

0.90
4700
5300

4583
5093

0.95 7450 6919

1.10 6050 6001

1.20 5400 5003 8400 7943

1.40 8970 8959

1.60 8400 8843

ωp-k ωnom ωrob ωp-k ωnom ωrob

qp-k qnom qp-k qnom
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8.6  Nominal and Robust Flutter Margins for a Flight Envelope

The nominal and robust flutter pressures shown in table 8.3 are used to compute flutter margins for a
flight envelope. These flutter margins are determined by the distance between the flutter pressure and the
dynamic pressure at the edge of the flight envelope at a particular Mach number.

Table 8.6 shows the flight conditions for several points at greater than Mach 0.8, which have the high-
est dynamic pressures in the defined flight envelope and the nominal and robust flutter margins. All of
these flutter margins have positive values, indicating the envelope is free of flutter instabilities. The criti-
cal flutter pressures are simply the sum of the flight envelope dynamic pressures and the flutter margins.

The flutter margins are often expressed in terms of the percent change, Π, in knots of equivalent
airspeed, KEAS, between the flight envelope and the flight condition corresponding to the critical flutter
pressure. Table 8.7 shows these percentage values.

Table 8.6. Nominal and robust flutter margins for a flight envelope expressed as allowable
increase in dynamic pressure computed with p-k and µ methods for symmetric and
antisymmetric modes.

Flight envelope Symmetric, lbf/ft2 Antisymmetric, lbf/ft2

Mach

0.80   948 2412 2220 1961 3652 3645 2700

0.90 1200 1500 1506 1375 1950 1857 1744

0.95 1337 1093 1051  992 1263 1414 1235

1.10 1491 3909 4185 2629 4009 1774 1336

1.20 1438 1031 1016  889 1412 1455 1215

1.40  1252  2276  2180  1782  3348  3187  2939

1.60  1027  3443  3460  2969  4673  4843  3509

Table 8.7. Nominal and robust flutter margins for a flight envelope expressed as percent of allow-
able increase in KEAS computed with p-k and µ methods for symmetric and antisymmetric modes.

Flight envelope Symmetric Antisymmetric

Mach  KEAS 

0.80  529   88   82  75  120  120  96

0.90  595   50   50  46  62  59  56

0.95  628   35   33  31  39  43  38

1.10  663   90   95  66  92  48  37

1.20  652   31   31  26  41  41  35

1.40  608   67   65  55  91  88  82

1.60  550  108  109  97  135  139  109

q Γp-k Γnom Γrob Γp-k Γnom Γrob

Πp-k Πnom Πrob Πp-k Πnom Πp-k
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A flutter margin yielding a percentage Π = 15 for allowable increase in KEAS is commonly used to
determine an operable flight envelope. The flutter margins shown in table 8.7 demonstrate the indicated
flight envelope for the F/A-18 SRA is acceptable because the nominal and robust flutter margins are all
greater than 15 percent for symmetric and antisymmetric modes. The smallest flutter margin occurs for
the symmetric mode dynamics at Mach 1.2, which presents a robust flutter margin of only 26 percent;
however, even this condition is greater than the desired 15-percent margin.

The dynamic pressures at which flutter occurs are converted into altitudes, commonly known as
matched-point solutions, using standard atmospheric equations. Figure 8.10 shows these altitudes plotted
for the symmetric modes, and figure 8.11 shows them for the antisymmetric modes. The flight envelope
of the F/A-18 airplane is shown on these plots, along with the required 15-percent flutter boundary for
military aircraft.

Figures 8.10 and 8.11 show several short solid lines to indicate the p-k flutter solutions throughout the
flight regime. Each of these short solid lines represents the flutter points caused by a specific mode. Flut-
ter points for the symmetric modes shown in figure 8.10 show four solid lines indicating three different
critical flutter modes for the considered range of Mach numbers and a subcritical flutter mode occurring
at supersonic Mach numbers. In figure 8.11, the antisymmetric modes show the onset of flutter from
three different critical modes and three subcritical flutter modes throughout the flight envelope. Table 8.4
shows the frequencies of the critical flutter modes.

The subsonic flutter altitudes for symmetric and antisymmetric modes demonstrate a similar charac-
teristic. The nominal flutter boundary shows a significant variation from Mach 0.80 to Mach 0.95 that is
caused by sensitivity to Mach number for the dynamics associated with the critical flutter mode. The
robust flutter boundary indicates the sensitivity of the plant to errors and the worst-case perturbation. The
higher altitude for the nominal flutter boundary at Mach 0.81 than for Mach 0.80 is reflected in the large
conservatism associated with the robust flutter boundary. Similarly, slight variation of Mach number near
Mach 0.95 is not expected to decrease the nominal flutter margin, so less conservatism is associated with
the robust flutter boundary.

An interesting trend is noticeable for the symmetric mode robust flutter points in figure 8.10 at the
supersonic Mach numbers. The flutter mechanism results from the same modes from Mach 1.2 to
Mach 1.6 with some increase in frequency. Similarly, the altitudes of the nominal flutter margins show
little change for these Mach numbers. The aeroelastic dynamics associated with the critical flutter mode
are relatively unaffected by the variation of Mach over this range, and consequently, each flutter bound-
ary has the same sensitivity to modeling errors.

The robust flutter margins for the antisymmetric modes at supersonic Mach numbers show a slightly
different behavior than the symmetric mode flutter margins. The flutter instability is again caused by a
single mechanism from Mach 1.2 to Mach 1.6, with similar frequency variation for the symmetric modes.
The robust flutter margins demonstrate a similar sensitivity to modeling errors at Mach 1.2 and Mach 1.4,
but at Mach 1.6, a greater sensitivity is shown. The greater conservatism at Mach 1.6 may indicate
impending transition in flutter mechanism to the subcritical mode at slightly higher Mach number.

Figures 8.10 and 8.11 show dark solid lines representing the required boundary for flutter points. All
nominal and robust flutter points lie outside this region, indicating the flight envelope should be safe from
flutter instabilities. The robust flutter boundaries computed with µ indicate more danger of encountering
flutter exists than was previously estimated with the p-k method. In particular, the robust flutter margin for
symmetric excitation at Mach 1.2 lies considerably closer to the boundary than the p-k method indicates.
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Figure 8.10. Nominal and robust flutter points for symmetric modes.

Figure 8.11. Nominal and robust flutter points for antisymmetric modes.

8.7  Computational Analysis

The µ analysis method of computing flutter margins presents significant analytical advantages
because of the robustness of the resulting flutter margin, but the method also has several computational
advantages over the p-k method. The µ algorithm requires a single, linear, aeroelastic, plant model at a
given Mach number to compute critical and subcritical flutter margins. An entire set of flutter margins
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can be easily generated in a few minutes using a standard engineering workstation and commercially
available software packages.15

The p-k method is an iterative procedure that requires finding a matched-point solution. The aircraft
is analyzed at a particular Mach number and air density. The airspeed at these conditions resulting in a
flutter instability is computed. This airspeed, however, often does not correspond to the unique airspeed
determined by that Mach number and air density for a standard atmosphere. Various air densities are used
to compute flutter solutions, and the corresponding airspeeds are plotted. Figure 8.12 shows an example
of an airspeed plot for flutter.

Figure 8.12 shows vertical lines representing two antisymmetric modes that may flutter at Mach 1.4.
The p-k method computes a flutter solution at the airspeed indicated where the modal line crosses the
standard-atmosphere curve. This flutter solution is difficult to compute from only a few air density com-
putations. Typically, several air densities are used to compute airspeed flutter solutions, and a line is
extrapolated between the points to determine the matched-point solution at the standard-atmosphere
crossing point. The nonlinear behavior shown for mode 1 near the standard-atmosphere crossing point
indicates an accurate flutter boundary would be extremely hard to predict unless many solutions are com-
puted near the true matched-point solution.

The p-k method can also have difficulty predicting the subcritical flutter margins. The second mode
in figure 8.12 may or may not intersect the standard-atmosphere curve. More computational analysis is
required to determine the behavior of this mode at high airspeeds. The µ analysis method accurately
detects the critical and subcritical flutter margins without requiring expensive iterations.

Figure 8.12. Antisymmetric p-k flutter solutions for Mach 1.4.
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CHAPTER 9
RESEARCH EXTENSIONS

9.1  Sensitivity Analysis

Stability margins, especially for high-performance aircraft, may be extremely sensitive to the aircraft
dynamics and flight conditions. Analytical models must be accurate to ensure the estimated stability
properties represent the true aircraft stability properties. Such accuracy is difficult to achieve for complex
modern aircraft designs because components such as flexible structural elements and flight regimes such
as high angles of attack are complex to model. The sensitivity of the stability margins to changes in the
model indicates some degree of confidence in the predicted aircraft stability properties. Margins with low
sensitivity are relatively trustworthy; margins with high sensitivity may be inaccurate in the presence of
modeling errors.

Sensitivity of flutter margins with respect to aeroelastic dynamics is traditionally considered using
statistical approaches. Elements of an analytical model are subjected to random perturbations with known
statistical properties, and changes in stability margins are monitored. A state-space model is used to
compute sensitivity to modal variations with a first-order approach.12 A finite-element model is used to
estimate sensitivity to higher-order perturbations.16 These methods are based on Monte Carlo simulations
that can be extremely time-consuming and provide no guarantees of sensitivity to perturbations not
explicitly used in the simulation.

The µ method can be directly applied to compute a measure of the sensitivity of the stability proper-
ties to variations in the analytical model. The conservatism introduced by the worst-case stability margin
is exactly a measure of the sensitivity to variations on the order of the uncertainty operators. Similarity
between nominal and robust margins indicates low sensitivity with respect to perturbations included in ÆÆÆÆ.

Definite advantages exist to computing sensitivity with µ instead of statistical approaches. The
exceedingly high number of perturbations needed for Monte Carlo simulations of complex systems is
replaced by a single calculation because operator theory ensures µ considers all perturbations .
Also, the sensitivity is guaranteed to be worst-case with respect to these perturbations.

9.2  On-Line Stability Tracking

Flight flutter testing incurs dramatic time and costs for safely expanding the flight envelope to ensure
no aeroelastic instabilities are encountered. Traditional flight test methods for determining flutter margins
that track estimates of modal damping obtained from flight data are inefficient and dangerous.2 Multiple
data sets must be taken at each test point to ensure sufficient excitation of critical modal dynamics. Also,
the envelope must be expanded in small increments because damping only indicates stability at the
current test point and cannot be reliably extrapolated to consider other flight conditions. Several proposed
on-line methods use modal filtering, parameter identification, and envelope analysis to increase confi-
dence in the flutter boundary.66 These methods, like damping tracking, compute stability indicators
rather than predictors.

The µ method is extended to compute stability estimates on-line during a flight test. The procedure
uses flight data from the current test point to update the uncertainty description and compute a new flutter

∆ ÆÆÆÆ∈



78

margin.67 Local and global approaches are formulated to reflect different degrees of confidence in the
model and flight data.

The concept of a flutterometer is introduced as a flight test tool to indicate the proximity of a flutter
condition.38 The on-line application of µ is a suitable algorithm for such a tool because µ is a stability
predictor and not merely a stability indicator. The flutterometer is anticipated to greatly improve the effi-
ciency of flight flutter programs. The time and cost can be reduced because the analysis time at each test
point is reduced, and because the predictive nature of µ allows greater distance in flight conditions
between test points because the flutter boundary is indicated. Also, flight test safety is increased because
the worst-case nature of µ introduces conservatism to the predicted flutter boundary.

9.3  Robust Aeroservoelastic Stability Analysis

Aeroservoelastic dynamics couple structural dynamics, control dynamics, sensing, aerodynamics,
and actuation.68 Stability analysis must account for the flutter dynamics and any unstable interactions
caused by the control system. More uncertainties inherently exist in an aeroservoelastic model because of
poor actuator modeling, nonlinear effectiveness of control surfaces, and noisy feedback measurements.
Incorrect margins of aeroservoelastic stability may result from analysis that does not account for these
model uncertainties.69

Several traditional approaches are used to analyze aeroservoelastic stability. Gain and phase margins
can be computed for single-input and single-output transfer functions.21 This approach does not charac-
terize robustness and does not easily extend to multiple-input and multiple-output systems. An approach
using singular values associated with loop-sensitivity functions has also been developed.41 This method
considers robustness but does not provide necessary and sufficient conditions for robust stability.

The µ method can be immediately used to compute aeroservoelastic stability margins.36 The closed-
loop system, including the controller and all uncertainty operators, is formulated in the LFT framework,
and µ computes a worst-case stability margin. This framework allows flutter and aeroservoelastic stabil-
ity margins to be easily computed from the same model.

9.4  Nonlinear Limit-Cycle Oscillation Analysis

The flutter phenomenon analyzed in this paper is a destructive instability associated with linear
operators. Another phenomenon known as a limit-cycle oscillation is a potentially destructive instability
associated with nonlinear systems. The nonlinearities can arise from structural dynamics, such as nonlin-
ear stiffness functions and freeplay, and from the aerodynamics caused by flow separation and
shock movement.70, 71

The µ method as described in this paper is not immediately well-suited to analyze highly nonlinear
systems. Linear operators can be used to bound uncertainty for small amounts of nonlinearity, but this
formulation will be overly conservative when the nonlinearities are significant. The µ method will not
even detect or characterize many limit-cycle oscillations because these phenomena, which can be
destructive to the aircraft, are actually stable in the sense of Lyapunov.

An approach to extend the µ method to include nonlinear limit-cycle dynamics has been developed.
The nominal model for this approach is the linear model that represents the best approximation to the
aircraft dynamics. The flight data are used to generate a nonlinear operator to associate with the linear
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operator through feedback that allows the closed-loop system to model the observed nonlinear behavior
of the aircraft. Uncertainty descriptions are also generated for the linear and nonlinear operators, and
robust stability theory is used to compute a worst-case stability margin.

Two approaches are investigated to analyze a nonlinear aeroelastic system.72, 73 The first approach
uses multiresolution wavelets to identify nonlinear behavior in the flight data.74 These wavelets present
time and frequency information that allow a more accurate representation of the observed dynamics.75

Another approach is based on nonlinear system identification in the LFT framework.76 This approach
will simultaneously generate a nonlinear operator and an uncertainty description for use with robust
stability analysis.



80

CHAPTER 10
CONCLUSION

A structured singular value (µ) analysis method of computing flutter margins has been introduced.
This method analyzes robust stability of a linear aeroelastic model with uncertainty operators. Flight data
can be used to formulate the uncertainty operators to accurately account for errors in the model and the
observed range of aircraft dynamics caused by time-varying aircraft parameters, nonlinearities, and flight
anomalies such as test nonrepeatibility. The µ-based approach computes flutter margins that are robust or
worst-case, with respect to the modeling uncertainty.

Nominal and robust flutter margins have been computed for the F/A-18 Systems Research Aircraft
(SRA) using µ and p-k methods. The similarity of the nominal flutter margins demonstrates the µ method
is a valid tool for computing flutter instability points and is computationally advantageous. Robust flutter
margins have been generated with respect to an uncertainty set generated by analysis of extensive flight
data. These margins are accepted with a great deal more confidence than previous estimates because
these margins directly account for modeling uncertainty in the analysis process. The robust flutter mar-
gins indicate the desired F/A-18 SRA flight envelope should be safe from aeroelastic flutter instabilities;
however, the flutter margins may lie noticeably closer to the flight envelope than previously estimated.

This method introduces µ as a flutter margin parameter that presents several advantages over tracking
damping trends as a measure of a tendency to instability from available flight data. The µ extends to
provide information about model sensitivity and is equally suitable for aeroelastic and aeroservoelastic
analysis. The predictive nature of µ makes it particularly attractive for flight test programs because a
robust stability margin can be computed using data from a stable test point. 

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, October 20, 1997
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APPENDIX A
UPPER BOUND FOR THE STRUCTURED SINGULAR VALUE

The structured singular value, µ, is a difficult quantity to compute and appears to be a nonpolynomial-
hard (NP-hard) problem.77 Upper and lower bounds have been derived that can easily be computed. The
lower bound can be solved by a power iteration that extracts the smallest destabilizing perturbation.20 The
upper bound can be posed as an optimization problem to present a conservative bound on the worst-case
stability properties of the system. This paper is primarily concerned with computing a worst-case stability
analysis, so this appendix concentrates on the optimization formulation to compute a µ upper bound.

Question A.0.1:  What is an upper bound for µ with respect to a general structured uncertainty
description that can be computed?

A simple upper bound for µ is immediately obvious from definition 3.3.1.

(A1)

This upper bound is essentially the robustness as measured by the small gain theorem and can be highly
conservative when the uncertainty operator is structured. The conservatism in this upper bound can be
reduced by considering two properties of singular values. 

Property A.0.2:  The maximum singular value has a multiplicative property.

(A2)

Property A.0.3:  The maximum singular value has a triangle-inequality property.

(A3)

These properties demonstrate the maximum singular value of a scaled matrix is less than or equal to
that of an unscaled matrix.

Lemma A.0.4:  Given matrix  and invertible , then

(A4)

Recall the definition of the uncertainty structure given in section 3.2.

(A5)

A set of scaling matrices is defined with structure similar to the uncertainty structure. The set D
contains blocks to scale with every complex and real uncertainty block.20
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(A6)

The set of scalings 

 

G 

 

 affect only the real parametric uncertainty blocks.

 

78

 

(A7)

Several advantageous properties of these scalings exist.

 

Property A.0.5:

 

  

 

Symmetric factors and inverses of scalings are valid scalings.

 

(A8)

 

Property A.0.6:

 

  

 

Every scaling
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D

 

 

 

and
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∈
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every uncertainty
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.

(A9)

The 

 

µ

 

 is shown to be invariant under transformations using the scaling matrices 

 

D

 

. 

 

20

 

 This invariance
arises as a direct consequence of Properties A.0.5 and A.0.6, which demonstrate 

    

ÆÆÆÆ

 

 = 

 

D
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. Thus, com-
puting 

 

µ

 

 with respect to 
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 is equivalent to computing 
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 for all D 

 

∈

 

 

 

D

 

. A new
upper bound for 

 

µ

 

 is formulated using these scaling matrices.

(A10)

This upper bound is less conservative than the unscaled upper bound because of the final inequality
that is a consequence of lemma A.0.4. This upper bound uses a search over all valid scaling matrices to
find the optimal scaling matrix that reduces the conservatism in the robustness computation. This upper
bound can be formulated as a maximum eigenvalue condition as demonstrated in lemma A.0.7.
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(A11)

 or equivalently  

(A12)

This upper bound allows scalar uncertainty parameters to lie within a norm-bounded disk centered in
the complex plane that can be conservative if these parameters are real. The conservatism can be reduced
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by introducing the second set of scaling matrices, 

 

G

 

, that affect only the real parametric uncertainty
blocks. These scalings restrict the uncertainty set to lie within a norm-bounded disk covering the real axis
between 1 and –1, but that disk is allowed to be centered off the origin. A new upper bound is formulated
with both 

 

D

 

 and 

 

G

 

  scalings.

 

78, 79

 

 

(A13)

This upper bound is presented as an optimization in lemma A.0.8.

 

Lemma A.0.8:

 

  

 

The constant matrix 

 

P

 

 is robustly stable, and

 

 

 

µ

 

(P) < 1 

 

with respect to the set 
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, 

 

if

 

(A14)

The 

 

G

 

 

 

 

 

matrices are zero if no real parameter uncertainty blocks exist in the system, so the condition in
lemma A.0.8 reverts to the condition in lemma A.0.7. When the 

 

G

 

 matrices are nonzero, the additional
terms in the new upper-bound condition arise by using an additional constraint on the signals in the
system.

 

78

 

 Consider a signal in the closed-loop system relating an uncertainty signal. The system
equation takes on the following form if the system is well-posed, ignoring the extraneous error and
disturbance signals.

(A15)

Allow the uncertainty to be a single repeated real parameter, 

 

∆ 

 

= 

 

δ

 

 I with 

 

δ

 

 

 

∈ 

 

R

 

, and take the complex
conjugate transpose of the entire equation.

(A16)

Combining this formula with a scaling G 

 

∈

 

 

 

G

 

   leads to the following.

(A17)

The following matrix is derived from the right and left sides of this equation.

(A18)

Consider the matrix term of the complex uncertainty robustness upper bound scaled by x.

(A19)

Combining the two equations leads to the new upper-bound condition.

(A20)
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This 

 

µ

 

 upper bound is directly related to robust stability analysis resulting from the small gain theo-
rem.

 

78

 

 The 

 

D

 

 scaling matrices use structure in the uncertainty; the 

 

G

 

  

 

 

 

matrices use additional phase infor-
mation provided by real, parametric, uncertainty blocks.

 

79

 

 This robustness condition is also related to a
stability criterion used in absolute stability theory where the scaling matrices enter as Popov multipliers.
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The 

 

µ

 

 upper-bound conditions in lemma A.0.7 and lemma A.0.8 compute the robustness of a constant
matrix to simplify the equations without carrying 

 

ω

 

 terms throughout the derivations. In practice, the
robustness must be computed for physical systems described by linear, time-invariant transfer functions,
G

 

 

 

 

 

∈

 

 , which are complex-valued matrix functions of frequency. The upper-bound conditions are
computed for 

 

 

 

these transfer functions by including an additional search over frequency to find the worst-
case upper bound.

 

Lemma A.0.9:

 

  

 

The transfer-function matrix 
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respect to the 

 

set 

    

ÆÆÆÆ

 

 

 

if

 
(A21)

Established software packages compute the 

 

µ

 

 upper bound by finding optimal scaling matrices
at  distinct frequency points.

 

15

 

 Frequency-varying scalings commute with linear time-invariant (LTI)
uncertainty that may not accurately capture the nature of the modeling errors. Restricting the scaling
matrices to be constant with no frequency variation allows consideration of uncertainty operators with
linear time-varying (LTV) behavior. The 

 

µ upper bound for complex uncertainty is a necessary and suffi-
cient condition for robust stability of an LTI plant with complex LTV uncertainty for any block struc-
ture.81 Computing robustness measures for LTI systems with complex LTV uncertainty has been
addressed for finite-energy signals82 and for finite-gain signals.83 Related papers have studies of robust-
ness conditions for systems with some type of rate bounds on the LTV uncertainty.84 

In general, a system will require both LTI and LTV uncertainties blocks to accurately describe the
modeling errors. Parametric uncertainties are associated with physical elements of the system that are
necessarily real and often time-varying. Dynamic uncertainties are used to introduce magnitude and
phase variations in uncertain signals and should be considered time-invariant. Introduce two sets of struc-
tured uncertainty operators.

(A22)

(A23)

The set     contains all LTV uncertainty operators that are allowed to change infinitely fast as a
function of time. Other researchers have investigated limits on the rate variation of complex time-varying
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parameters that are not addressed in this paper.

 

84

 

 Correspondingly, the set 

    

    

 

contains all LTI uncer-
tainty operators that are allowed to vary with frequency. These sets are allowed to enter the problem as
shown in figure A.1.

Figure A.1. Block diagram with LTI and LTV uncertainty.

Associated with these uncertainty descriptions are scaling matrices. Constant scaling matrices, ,
are structured like 

 

D

 

 to associate with the time-varying uncertainty, . Frequency-dependent scalings,
, are associated with the time-invariant uncertainty, . The block structure of each of these

sets matches the block structure of the corresponding uncertainty set.

The uncertainty and scaling matrix sets can be combined into single sets for ease of notation.

(A24)

Lemma A.0.10 describes the robustness upper-bound condition.

 

Lemma A.0.10:
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and norm-bounded uncertainty  such that
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then the system described by transfer function
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(A26)

The search for optimal scaling matrices that achieve the lowest robustness value possible can be for-
mulated as an optimization to minimize 

 

α

 

 subject to a constraint function associated with an eigenvalue
condition. An additional constraint arises from restricting the 

 

D

 

 scaling matrices to be positive definite.
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(A27)

This upper-bound condition is written in this format to ease understanding of the function and
develop solution algorithms. Specifically, the minimization problem as shown above with the eigenvalue
constraints is a linear matrix inequality (LMI). The LMI is a convenient framework to use because com-
mon properties global to all LMI problems exist.

 

85

 

 The main property states an LMI is a convex function
of the variables that allows solutions to be computed using standard convex optimization algorithms. The
ellipsoid method and the interior point algorithm of the method of centers are shown to be efficient for
LMI solutions.

 

86–88

 

This optimization involves a search over frequency. Only a finite set of frequency points are used in
practice, and engineering judgment must be used in choosing the set of frequency points. Testing the
robustness condition at more frequency points will increase the accuracy of the upper bound, but the
number of free parameters will rise accordingly and increase computational time.
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ωmin  α 

subject to          M– ∗ DM j   GM M ∗ G– ( ) –  α 
2

 D 0 > +
D 0

 
>
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APPENDIX B

NOMINAL AEROELASTIC MODELS IN THE STRUCTURED SINGULAR VALUE 
FRAMEWORK WITH KNOWN AERODYNAMIC STIFFNESS AND DAMPING

 

This paper presents an aeroelastic model formulated by approximating the unsteady aerodynamics as
a state-space system. The unsteady aerodynamic forces are treated as an unknown system with no
specialized structure. This appendix considers formulating a state-space system to the unsteady aerody-
namics with a specified structure. The resulting aeroelastic model is parameterized around dynamic pres-
sure, and the structured elements of the aerodynamic forces appear in the model.

The general formulation shown in section 4.1 approximates the unsteady aerodynamic forces as a
state-space system. This unstructured formulation does not explicitly include additional information
regarding the aerodynamics that can be obtained from sources other than the computational model. In par-
ticular, the steady aerodynamics and first-order derivatives are often measured from wind-tunnel testing.
Two matrix terms are introduced to the unsteady aerodynamic formulation to include this information.

(B1)

This system is quite similar to Karpel’s form.

 

29

 

 The main difference is the absence of an additional
 term. This term is typically not available from experimental data and is not explicitly represented in

this formulation.

The state-space elements, { , , , }, are computed using standard system identification
algorithms. The known matrix elements are subtracted from the unsteady aerodynamic force data, and the
resulting system, , is approximated by the state-space elements.

(B2)

Given the number of generalized states, n, such that  and the number of aerodynamic

states, , define , , , and  as the elements of the

state-space system approximating .

The aeroelastic model is extended to include the additional  and  terms. Consider the signal, y,

generated by an input to the state-space portion of force matrix. Define the signal, , as the vector

of aerodynamic states.

(B3)
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Formulate the aeroelastic differential equation using x.

(B4)

A state-space system is formulated using the generalized states,  and , and the unsteady aerody-
namic states, x. The state-update matrix is determined by the following three differential equations.

(B5)

This state-space aeroelastic can be parameterized around dynamic pressure. Consider an additive
perturbation to dynamic pressure,  
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.

 =  + (B6)

Separate terms in the system dynamics that involve .

(B7)

The signals z and w are introduced into this formulation to associate the perturbation in dynamic
pressure to the nominal dynamics in a feedback manner. The signal z can be generated as an output of the
plant because it is a linear combination of states.

(B8)
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The signal w is related to z by the dynamic pressure perturbation.

w = z (B9)

The state-space aeroelastic model for nominal stability analysis in the 

 

µ 

 

framework is formulated
using the state-update matrix. The matrix is determined by the dynamics at the nominal dynamic pressure
and the additional input and output signals used to introduce perturbations to the dynamic pressure. That
perturbation, , is not an explicit parameter in the state-space model because the perturbation only
affects the plant through a feedback relationship as determined by the signals z and w. Define the transfer
function P(s) generated by state-space matrices such that z = P(s)w.

(B10)

Figure 4.1 shows the feedback interconnection between the perturbation in dynamic pressure and the
nominal plant model parameterized around that perturbation. This interconnection is a linear fractional
transformation, and the small gain condition of lemma 2.4.1 or the structured singular value condition of
theorem 3.3.3 can be directly applied to analyze stability with respect to a variation in the flight condition

. This system reduces to the parameterized model presented in section 4.2 if .
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